
CANopen
Library

Programmer's guide

Project code 0001h

Mosfilmovskaya Street 17B, 117330 Moscow, the Russian Federation.
Phone: +7-495-9391324 Fax: +7-495-9395659
Email: info@marathon.ru www.marathon.ru
Copyright © 2005–2016 Marathon Ltd. All rights reserved.

http://can.marathon.ru/

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Table of Contents
Basic features..4

The functionality of the library..4
The library limitations...4
Optimization of the library source code..4

Documentation..5
Abbreviations and definitions..5
Basic data types...5

Revision history..7
Version management...7

Assembly and installation of the library..8
CAN driver installation..8
The library layout...8
Windows operational system...8
Linux operational system...8

Implementation technology of the library functions and protocols...10
CAN controller acceptance filter...10
Incoming frame CAN–IDs processing technique..10
Restricted CAN identifiers...10
Object dictionary implementation...11
SDO protocol implementation...11
LSS protocol implementation..11
Non-volatile memory storage module...12

CANopen library API data types and structures..13
Library data types..13
Data link layer driver data types..13
Data structures...13

Auxiliary data structures...13
API data structures..14

Library modules placement...15
The functionality of the library modules..17

CAN network data link layer modules..17
SDO transaction modules..17
CANopen objects assembly and processing modules..17
Communication profile object dictionary..17
Application profiles object dictionary...18
General purpose modules...18
Initialization and events processing modules..18
Other modules..18

CAN data link layer driver API..20
Communication profile area..23

NMT objects..23
Master and slave objects..23
Master objects..24
Slave objects..24

CANopen application assembly settings...26
Master and slave functions API..30
Master functions API...31
Slave functions API..37
User edited functions API..41

2

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

General management functions API...45
System–dependent functions API...46
LED indication module..47

Error LED (red)...47
Run LED (green)...47
Physical LED control functions...48
LED functions API..48

Library application examples..49
CAN node-ID and bit rate index...50

CAN node-ID...50
Standard CiA bit timing parameter table...50

CANopen error codes...51
SDO abort codes..51
Emergency error code classes..52
Emergency error codes..52

Generic pre-defined connection set...55
Broadcast objects...55
Peer-to-peer objects...55
Other objects..55
Restricted CAN-IDs...55

CANopen conformance test...57

3

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Basic features

The CANopen library enables you to develop master and slave devices compliant to CiA 301 v. 4.2.
The library supports LSS slave, based on the CiA DSP 305 v. 2.2 specification. The library code is
written in ANSI C language taking into account scalability and portability on different platforms.

To access the network at the data link layer the library uses the CHAI driver API. All dependencies
of the runtime environment are available in separate modules. Thus, the source code of the library
itself is not dependent on specific platform and the same for embedded applications and for tasks
that are running under operating systems: Windows, Linux and others.

• The library provides hard real-time operation mode. Its architecture is based on re–entrant
functions that allow asynchronous call from the application program.

• Communication profile objects perform a full reconfiguration in accordance with CiA 301.
• Initialization of communication objects is performed according to the generic pre-defined

connection set.

The functionality of the library

• CANopen SDO protocol is supported in all defined by the CiA 301 modes: expedited, segmented
and block.

• All PDO transmission types are supported (cyclic, acyclic, synchronous, asynchronous, RTR
only). Both static and dynamic PDO mapping can be used.

• SYNC protocol operates with or without the SYNC counter.
• All NMT services and NMT protocols are supported.
• Full LSS protocols family is implemented, including Fastscan.

The library limitations

• The maximum size of any object should not exceed 7FFFFFFFh (2147483647) bytes.
• The minimum value of the CANopen timer period is 100 microseconds (frequency not exceeding

10 KHz).
• The CANopen communication profile supports only 11-bit CAN identifiers. 29-bit CAN-IDs are

reserved and are not used in the CANopen protocol. The library ignores all incoming frames
with 29-bit identifiers.

Optimization of the library source code

Using the library it is strongly recommended to disable algorithmic optimization of the source code
by a compiler. Optimization often violates compliance of the algorithms written in high level
language and machine code generated by the compiler. Partial suppression of the optimization
techniques, for example, additional variable declarations "volatile", do not guarantee that all errors
and side effects of the optimization will be eliminated.

4

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Documentation

The CANopen library is developed based on the CAN in Automation specifications:

CiA 301 v. 4.2 CANopen application layer and communication profile.

CiA 303 p. 3 v. 1.4 Indicator specification.

CiA 305 v. 2.2 Layer setting services.

CiA 306 v. 1.3 Electronic data sheet specification.

A supplement to this manual are the guides:
"Adapted slave for Windows OS";
"Adapted master for Windows OS";
"DLL master for Windows OS with LabVIEW application".

Abbreviations and definitions

CiA CAN in Automation http://www.can-cia.org/

CAN-ID CAN data link identifier.

COB-ID CANopen communication object identifier.

NMT Network management.

LSS Layer setting services.

EDS Electronic data sheet.

DCF Device configuration file.

PDO Process data object.

RTR Remote transmission request.

SDO Service data object.

M Mandatory object.

O Optional object.

LSB Least significant bit/byte.

MSB Most significant bit/byte.

RO Read only access.

WO Write only access.

RW Read and write access.

RWR Read / write on process input (TPDO).

RWW Read / write on process output (RPDO).

Basic data types

boolean Logical value TRUE or FALSE.
int8 Signed integer 8 bit.
unsigned8 Unsigned integer 8 bit.
int16 Signed integer 16 bit.

5

http://www.can-cia.org/

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

unsigned16 Unsigned integer 16 bit.
int32 Signed integer 32 bit.
unsigned32 Unsigned integer 32 bit.
int64 Signed integer 64 bit.
unsigned64 Unsigned integer 54 bit.
real32 32 bit floating point.
real64 64 bit floating point.
vis–string Visible string (values 0 and 20h to 7Eh).
octet-string Octet string (values 0 to FFh).

6

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Revision history

Version 2.3

CANopen master for Windows OS, implemented as a DLL module is included in the library. One
of the master applications is an interface module with the LabVIEW package.
The library is adapted for passing CANopen conformance test of the third major version.

Version management

The library supports simple version control system based on the C language pre-processor
directives. Each library module is enclosed in the conditional macro:
#if CHECK_VERSION(2, 3, 0)

library module source code
#endif
The first argument of the macro means the major version of the library, the second is the minor
version and the third is the issue number. All library modules must have the same major and minor
versions, and the issue number should not be below the minimum (usually zero).
If the major and minor versions are changed, the following rules apply:
• if the module code is not changed, it is assigned a zero issue number;
• if the module code is updated, when changing the major or minor versions, it is assigned the first

issue number.
Version history of the library module is saved by storing its latest release as C language comment.
For example, the set of macros
#if CHECK_VERSION(2, 2, 0)
// CHECK_VERSION(2, 1, 0)
// CHECK_VERSION(2, 0, 0)
// CHECK_VERSION(1, 7, 1)
means that the current 2.2.0 version is identical to the version 1.7.1 of this module.

7

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Assembly and installation of the library

Build and installation of the library for operating systems Linux and Windows.

CAN driver installation

Install CAN data link layer driver CHAI in accordance with the instructions posted on the website
http://can.marathon.ru/page/prog/chai .
Note. The library assembly in the test mode does not require CAN controller and the driver.

The library layout

The CANopen directory contains the sub-directory of the type 2.3.x, which identifies the library
version. The first number means the major version of the library, the second is the minor version.
All library modules must have the same major and minor versions, and the issue number should not
be below the minimum (usually zero). The specified sub-directory, in turn, contains the following
three directories:
• Linux – contains modules for Linux operating system.
• src – "root" directory of the CANopen source code library. Location of all modules is given

relative to this directory.
• win – here are placed the project files (*.sln, *.suo, *.vcxproj, *.vcxproj.*) for the Microsoft

Visual C++ 2010. These projects can be used to build target application based on the CANopen
library.

Windows operational system

To build the CANopen application in the header file \include__can_defines.h you should choose
the type of operating system Windows: #define CAN_OS_WIN32 and set the build mode of the
target application CAN_APPLICATION_MODE. You can override other configuration settings, if
necessary.
To compile the application using Microsoft Visual C++ 2010, you must perform the following
operations:
• Specify the directories where the header files of the library and CHAI driver are located. For

example, ..\src\include for the CANopen library files and
C:\Program Files (x86)\CHAI – 2.10.4\include for the CHAI driver header files. Navigation:
Project –> Properties –> Configuration properties –> C/C++ –> Additional Include Directories.

• Specify the directories where CHAI driver lib file is located. For instance,
C:\Program Files (x86)\CHAI – 2.10.4\lib. Navigation: Project –> Properties –> Configuration
properties –> Linker –> Additional Library Directories.

• Build target application. Navigation: Build –> Build Solution.

Linux operational system

To build the CANopen application in the header file \include__can_defines.h you should choose
the type of operating system Linux: #define CAN_OS_LINUX and set the build mode of the target
application CAN_APPLICATION_MODE. You can override other configuration settings, if
necessary.
To compile the application, run make command with one of the options: 'make canmaster' for
master application, 'make canslave' for the slave one or 'make cantest' to compile the test

8

http://can.marathon.ru/page/prog/chai
http://can.marathon.ru/page/prog/chai

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

application. In the Make.vars file you may need to adjust the path to the header and library files of
the CHAI driver. As a result of the compilation the executable application module *canapp is
generated.

9

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Implementation technology of the library functions and protocols

CAN controller acceptance filter

Incoming CAN frames filtering is carried out using the CAN–ID bit mask. The filter passes only
those frames in which some bits have a certain fixed value. Since all CAN nodes must receive NMT
frames with zero CAN-ID, the filter should pass all the CAN–IDs in which the value of any bit is
equal to zero. Thus, single-level filtering can't get rid of the frames, where the bits of the identifier
can accept both 0 and 1 values. That is, the efficiency of this filtration depends on the CAN node-
ID. The node number 127 will receive all CAN frames, because it needs to handle NMT requests
with the identifier equal to zero, as well as frames addressed to the node with the value of seven
least significant CAN–ID bits equal to 1 (the node number for the generic pre-defined connection
set). Two-level filter does not have this drawback. Here it is possible to filter separately the
broadcast frames with zero value of the node number field (NMT, SYNC, TIME STAMP) and with
the value of the seven least significant CAN–ID bits corresponding to the number of the node. Thus,
for the generic pre-defined connection set only the frames destined to this CAN node are selected.

Incoming frame CAN–IDs processing technique

The library supports two ways of incoming frames CAN-IDs processing: dynamic and static. The
dynamic method requires significantly less memory, but not as computing speed effective as static.
For the dynamic method the disordered array of records is created. It contains the value of CAN–ID
and the corresponding communication object dictionary index. When receiving a CAN frame linear
search of the index, corresponding to the received CAN-ID, is performed. Total number of CAN-
IDs, processed by the dynamic method, is determined by the parameters
CAN_NOF_RECVCANID_MASTER (for the master) and CAN_NOF_RECVCANID_SLAVE
(for the slave) in the header file \include__can_defines.h. The dynamic method is effective when
the total number of processed CAN–IDs do not exceed 50..100, depending on the CPU
performance. The static method is only used for the CANopen master and 11-bit CAN–IDs. It
creates an array which size corresponds to the maximum possible number of identifiers that are
mapped to the communication object dictionary indexes. The CAN–IDs processing method for the
CANopen master is defined by the parameter CAN_MASTER_RECVCANID_METHOD in the
header file \include__can_defines.h. CAN controller acceptance filter is set only for the dynamic
method. For CANopen slave only the dynamic method is used, due to small number of configurable
CAN-IDs (usually 11).

Restricted CAN identifiers

From the entire set of restricted CAN-IDs, NMT object identifiers are processed regardless of the
settings: NMT (CAN–ID = 0h) and NMT Error Control (CAN–IDs 701h to 77Fh). In addition, when
LSS protocol is activated identifiers 7E5h (transmitted by the LSS master) and 7E4h (transmitted by
the LSS slave) are also handled directly. Assignment of these identifiers to other objects will not
allow the latter to use them, since the corresponding CAN–IDs are intercepted before processing
any configurable identifiers. Restricted CAN-IDs are also checked and banned in any configurable
COB-IDs. For SDO objects CAN-ID values can only be in acceptable ranges. However, the library
does not exercise control over the use of other configurable identifiers.

10

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Object dictionary implementation

Object dictionary entries are implemented statically. This enables asynchronous access to the
dictionary, for example, with the PDOs. Object dictionary implementation example for the slave
test profile is given in the \slave__obdms_slave_test.h module.
As a possible access method to the slave devices object dictionary, the library offers mapping in the
master slaves application profile object dictionary entries. This enables direct master-slave data
exchange with both SDO and PDO protocols. Communication profile area of the master (client) and
slaves (servers) do not require mapping and implemented independently. An example of the object
dictionary mapping implementation for the slave test profile is given in the module
\master__obdms_master_test.h. Another examples of the object dictionary implementation and
operations can be found in adapted master and slave library versions, as well as in the CANopen
DLL master.

SDO protocol implementation

Up to four data bytes, enclosed in a single CAN frame, are transmitted in an expedited SDO
protocol: additional buffering in this case is not required. Segmented SDO protocol exchanges data
with buffering on both the transmitting and the receiving side. During the initialization of the
segmented protocol the transmitting party reads the corresponding object dictionary entry into a
dynamic buffer, and the receiving party allocates a buffer of the required size. Data is updated in the
object dictionary of the receiving party only after the successful completion of the entire
transmission cycle. The maximum size of the object dictionary entry, transferred using the
segmented SDO protocol is defined by the parameter CAN_SIZE_MAXSDOMEM. This parameter
is used by the specialized signal-safe dynamic memory allocation function to determine the
maximum buffer size. Block SDO protocol uses buffering on the server side and only if all the data
can be placed in a dynamic buffer. But, as a rule, block data transfer is performed directly between
the object dictionary entries of the transmitting and receiving parties. This is provided by an access
to the relevant entries using a byte pointer. Block protocol ensures the received data consistency
only after the successful completion of the entire data exchange cycle. Otherwise, the corresponding
object dictionary entry should not be used.

LSS protocol implementation

LSS protocol is activated when the device detects that it has CAN node-ID equal to 255 (non-
configured CANopen device). In this case, it switches to the LSS waiting state. LSS slave device
becomes configured after storage the CAN node-ID value in the range 1 to 127 in the non-volatile
memory. "Store configuration" protocol is utilized to fulfill the operation. LSS Fastscan protocol is
active only for LSS slave devices with CAN node-ID equal to 255 (non-configured CANopen
device).
LSS protocol identifiers are processed regardless of any other CANopen communication objects
CAN-IDs configuration. In addition, the configured LSS device fulfills two NMT command: Reset
Node and Reset Communication. After the commands execution the device goes into pre-
operational NMT state. No other CANopen communication objects are used in the LSS device.
However, for localization of possible application errors initialization of the CANopen
communication objects is performed with the value of CAN node-ID equal to zero.

11

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Non-volatile memory storage module

In non-volatile memory support module can_obj_re_store.c actual storage of parameters is done in
ordinary static arrays of data. The consistency of data is controlled by a 16–bit CRC code. When
migrating the program module to the micro-controller platform, these arrays should be replaced by
the corresponding addresses of the non-volatile memory (flash, EEPROM). In addition, this
platform API should be used.
Store/restore objects (1010h, 1011h) support 6 sub-indexes.
1010h sub1h: Save all parameters.
1010h sub2h: Save communication parameters.
1010h sub3h: Save application parameters.
1010h sub4h: Do not save any parameters.
1010h sub5h: Save CAN node-ID.
1010h sub6h: Save CAN bit rate index.
1011h sub1h: Restore all parameters.
1011h sub2h: Restore communication default parameters.
1011h sub3h: Restore application default parameters.
1011hsub4h: Restore default parameters: 1005h, 1012h, 1014h, 1400hsub1h, 1401hsub1h, 1402hsub1h,

1403hsub1h, 1800hsub1h, 1801hsub1h, 1802hsub1h, 1803hsub1h. Default values of the
parameters specify generic pre-defined connection set CAN-IDs, taking into account the
CANopen device node-ID.

1011h sub5h: Restore CAN node-ID default selection.
1011h sub6h: Restore CAN bit rate index default selection.

12

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CANopen library API data types and structures

Library data types

Name Data type Comments

canbyte unsigned8 Unsigned integer 8 bit.

cannode unsigned8 Unsigned integer 8 bit, CAN node-ID.

canindex unsigned16 Unsigned integer 16 bit, object dictionary index.

cansubind unsigned8 Unsigned integer 8 bit, object dictionary sub-index.

canlink unsigned16 Unsigned integer 16 bit, 11-bit CAN–ID.

canlink unsigned32 Unsigned integer 32 bit, 29-bit CAN–ID. Not used in CANopen.

Data link layer driver data types

Name Comments

_u8 Unsigned integer 8 bit.

_s8 Signed integer 8 bit.

_u16 Unsigned integer 16 bit.

_s16 Signed integer 16 bit.

_u32 Unsigned integer 32 bit.

_s32 Signed integer 32 bit.

Data structures

Auxiliary data structures

struct sdoixs {
canindex sdoind communication SDO parameter index (objects 1200h to 12FFh).
canindex index application object index.
cansubind subind application object sub-index.

};
sdoixs structure defines SDO protocol communication object, as well as index and sub-index of the
application object (SDO protocol multiplexer).

struct sdostatus {
int16 state status during and after SDO client transaction.
unsigned32 abortcode SDO abort code, if state has the value

CAN_TRANSTATE_SDO_SRVABORT.
};
sdostatus structure places information about the status of the SDO client transaction.

13

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

API data structures

struct sdocltappl {
unsigned8 operation
cannode node

basic SDO transfer mode (upload / download).
SDO server node-ID.

unsigned32 datasize the size of data in bytes.
canbyte *datapnt byte pointer to the local buffer.
struct sdoixs si SDO indexes structure.
struct sdоstatus ss SDO transaction status.

};
sdocltappl structure is used by the SDO client when exchanging data with SDO protocol.

struct canframe {
unsigned32 id CAN–ID.
unsigned8 data[8] CAN frame data field.
unsigned8 len data length (0 to 8).
unsigned16 flg CAN frame flags: bit 0 RTR, bit 2 EFF.
unsigned32 ts CAN frame time stamp (microseconds).

};
canframe structure places CAN data link layer frame. It is defined in the CAN driver header file
(canmsg_t structure).

14

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Library modules placement

Library modules placement is given relative to the "root" CANopen directory.

master directory. CANopen master and SDO client modules.
• can_client.c – complete SDO client transactions support.

can_clt_block.h – block protocol SDO client transactions.
• can_cltrans.c – basic SDO client transactions support (client request, server response).
• can_obdclt.c – access manager to the client (master) object dictionaries.
• can_obdsdo_client.c – client SDO parameters object dictionary.
• can_test_driver.c – loopback test mode CAN driver.
The following modules in this directory may be edited by the user:
• __can_test_application.c – client operations and test device object dictionary mapping.
• __obd_mans_master.c – access manager to the slave devices object dictionary mapping.

__obdms_master_*.h – slave devices object dictionary mapping.

slave directory. CANopen slave and SDO server modules.
• can_lss_slave.c – LSS slave protocols.
• can_obdsdo_server.c – modules manager of the SDO server parameters object dictionary.

can_obdsdo_server_default.h – SDO server default parameter.
can_obdsdo_server_num.h – SDO server several parameters.

• can_obj_device.c – the device specification object dictionary.
• can_obdsrv.c – access manager to the server (slave) object dictionaries.
• can_server.c – modules manager for the complete SDO server transactions.

can_server_block.h – SDO block protocol server transactions.
can_server_common.h – common functions for the complete SDO server transactions.
can_server_min.h – complete transactions for the SDO server default parameter.
can_server_standard.h – complete transactions for the SDO server several parameters.

The following modules in this directory may be edited by the user:
• __can_devices.c – devices description modules manager.

__can_device_*.h – slave devices description.
• __obd_mans_slave.c – application profile modules manager.

__obdms_slave_*.h – application profile object dictionaries.

common directory. CANopen common modules.
\pdomapping sub-directory contains an object dictionary PDO mapping.
• can_backinit.c – CAN device (re)initialization functions, CANopen timer manager and monitor.
• can_canid.c – dynamic or static CAN–IDs processing manager.

can_canid_dynamic.h – dynamic CAN–IDs and incoming CAN frames acceptance filter.
can_canid_static.h – static CAN–IDs support.

• can_globals.c – external (global) variables and data structures.
• can_inout.c – CAN data link frames receiving and sending, the primary analysis of the received

frames.
• can_led_indicator.c – LED indication.
• can_lib.c – general purpose functions: CRC calculation, data conversion, etc.
• can_malloc.c – specialized signal-safe dynamic memory allocation function.
• can_nmt_master.c – NMT master.
• can_nmt_slave.c – NMT slave.
• can_obj_deftype.c – type definition objects (DEFTYPE).
• can_obj_emcy.c – emergency producer objects (EMCY).
• can_obj_errors.c – error objects.
• can_obj_err_behaviour.c – error behavior object.

15

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• can_obj_re_store.c – store/restore objects.
• can_obj_sync.c – SYNC objects.
• can_obj_time.c – time stamp object.
• can_pdo_map.c – dynamic or static PDO mapping modules manager.

can_pdo_map_dynamic_bit.h – assembly, activation of the dynamic PDO bit-mapping.
can_pdo_map_dynamic_byte.h – assembly, activation of the dynamic PDO byte-mapping.
can_pdo_map_static.h – assembly, activation of the static PDO byte-mapping.

• can_pdo_obd.c – PDO communication parameters object dictionary.
• can_pdo_proc.c – processing the received and transmitted PDO frames.
• can_sdo_proc.c – processing the received and transmitted SDO frames.
The following modules in this directory may be edited by the user:
• __can_events.c – CANopen event handlers (emergency, errors, etc).
• __can_init.c – CAN node-ID and CAN bit rate index selection.
• pdomapping__map__static.h – static PDO mapping configuring.
• pdomapping__map_recv_*_*.h , pdomapping__map_tran_*_*.h – dynamic RPDO and TPDO

mapping configuring.

include directory. Definitions and prototypes.
• can_header.h – main header module.
• can_genhead.h – basic includes and external definitions module.
• can_defines.h – CANopen specific constants and parameters.
• can_macros.h – CANopen library macros definitions.
• can_structures.h – data structures definitions.
• can_typedefs.h – data types definitions.
• can_defunc.h – common internal function prototypes.
• can_defunc_master.h – master internal functions prototypes.
• can_defunc_nmt.h – NMT functions prototypes.
• can_defunc_slave.h – slave internal functions prototypes.
• can_user_api_call.h – prototypes of the API functions, called by the user application.
• can_user_api_edit.h – prototypes of the API functions, called by the CANopen events.
The following modules in this directory may be edited by the user:
• __can_defines.h – CANopen configuration constants and parameters definitions.
• __can_defunc_master.h – master functions of the slave devices object dictionary mapping.
• __can_node_id.h – CAN node-ID and CAN bit rate index values.

root CANopen directory.
Runtime environment and OS dependent functions: CANopen timer, delays, critical sections etc.
• can_system_linux.h – system–dependent functions for Linux OS.
• can_system_windows.h – system–dependent functions for Windows OS.
The following modules in this directory may be edited by the user:
• _can_main.c – main(…) executable function and the library program main loop.
• __can_system.c – system–dependent modules manager.

16

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

The functionality of the library modules

The library units can belong to multiple functional groups.

CAN network data link layer modules

• can_canid.c – dynamic or static CAN–IDs processing manager.
can_canid_dynamic.h – dynamic CAN–IDs and incoming CAN frames acceptance filter.
can_canid_static.h – static CAN–IDs support.

• can_inout.c – CAN data link frames receiving and sending, the primary analysis of the received
frames.

• can_test_driver.c – loopback test mode CAN driver.

SDO transaction modules

SDO protocol data exchange is initiated and managed by the SDO client. Therefore, the SDO client
transactions are implemented by two-level scheme. Basic transaction is a confirmed service, when
the client transmits request to the server and receives confirmation (both a single CAN frame).
Complete SDO client transaction controls the entire cycle of data exchange.
The SDO server does not provide an explicit identification of basic and complete transactions. At
the same time, the server monitors the entire data exchange in the SDO protocol.
• can_client.c – complete SDO client transactions support.

can_clt_block.h – block protocol SDO client transactions.
• can_cltrans.c – basic SDO client transactions support (client request, server response).
• can_server.c – modules manager for the complete SDO server transactions.

can_server_block.h – SDO block protocol server transactions.
can_server_common.h – common functions for the complete SDO server transactions.
can_server_min.h – complete transactions for the SDO server default parameter.
can_server_standard.h – complete transactions for the SDO server several parameters.

CANopen objects assembly and processing modules

• can_pdo_proc.c – processing the received and transmitted PDO frames.
• can_sdo_proc.c – processing the received and transmitted SDO frames.
• can_obj_emcy.c – emergency producer (EMCY).
• can_nmt_master.c – NMT master objects reception and transmission.
• can_nmt_slave.c – NMT slave objects reception and transmission.
• can_pdo_map.c – dynamic or static PDO mapping modules manager.

can_pdo_map_dynamic_bit.h – assembly, activation of the dynamic PDO bit-mapping.
can_pdo_map_dynamic_byte.h – assembly, activation of the dynamic PDO byte-mapping.
can_pdo_map_static.h – assembly, activation of the static PDO byte-mapping.

Communication profile object dictionary

• can_obdclt.c – access manager to the client (master) object dictionaries.
• can_obdsrv.c – access manager to the server (slave) object dictionaries.
• can_obj_device.c – the device specification object dictionary.
• __can_devices.c – devices description modules manager.

__can_device_*.h – slave devices description (objects 1000h, 1002h, 1008h, 1009h, 100Ah,

17

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

1018h).
• can_obdsdo_client.c – client SDO parameters object dictionary (objects 1280h to 12FFh).
• can_obdsdo_server.c – modules manager of the SDO server parameters object dictionary.

can_obdsdo_server_default.h – SDO server default parameter (object 1200h).
can_obdsdo_server_num.h – SDO server several parameters (objects 1200h to 127Fh).

• can_nmt_master.c – NMT master objects reception and transmission (1016h, 100Ch, 100Dh).
• can_nmt_slave.c – NMT slave objects reception and transmission (1017h, 100Ch, 100Dh).
• can_obj_deftype.c – type definition objects (0001h to 0007h).
• can_obj_emcy.c – emergency producer objects (1014h, 1015h).
• can_obj_errors.c – error objects (1001h, 1003h).
• can_obj_err_behaviour.c – error behavior object (1029h).
• can_obj_re_store.c – store/restore objects (1010h, 1011h).
• can_obj_sync.c – SYNC objects (1005h, 1006h, 1007h, 1019h).
• can_obj_time.c – time stamp object (1012h).
• can_pdo_obd.c – PDO communication parameters object dictionary (objects 1400h to 15FFh

and 1800h to 19FFh).
• can_pdo_map.c – dynamic or static PDO mapping modules manager (objects 1600h to 17FFh,

and 1A00h to 1BFFh).
can_pdo_map_dynamic_bit.h – assembly, activation of the dynamic PDO bit-mapping.
can_pdo_map_dynamic_byte.h – assembly, activation of the dynamic PDO byte-mapping.
can_pdo_map_static.h – assembly, activation of the static PDO byte-mapping.
\pdomapping__map__static.h – static PDO mapping objects configuring.
\pdomapping__map_recv_*_*.h , pdomapping__map_tran_*_*.h – dynamic receive and
transmit PDO mapping objects configuring.

Application profiles object dictionary

• __can_test_application.c – client operations and the test device object dictionary mapping.
• __obd_mans_master.c – access manager to the slave devices object dictionary mapping.

__obdms_master_*.h – slave devices object dictionary mapping.
• __obd_mans_slave.c – application profiles access manager.

__obdms_slave_*.h – application profile object dictionaries.

General purpose modules

• can_globals.c – external (global) variables and data structures.
• can_lib.c – general purpose functions: CRC calculation, data conversion, etc.
• can_malloc.c – specialized signal-safe dynamic memory allocation function.

Initialization and events processing modules

• can_backinit.c – CAN device (re)initialization functions, CANopen timer manager and monitor.
• __can_events.c – CANopen event handlers (emergency, errors, etc).
• __can_init.c – CAN node-ID and CAN bit rate index selection.

Other modules

• can_led_indicator.c – LED indication.
• can_lss_slave.c – LSS slave protocols.
• __can_main.c – main(…) executable function and the library program main loop.

18

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• __can_system.c – system–dependent modules manager.
can_system_linux.h – system–dependent functions for Linux OS.
can_system_windows.h – system–dependent functions for Windows OS.

19

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CAN data link layer driver API

CANopen library connects to the data link layer using CHAI driver. Only the basic driver API
functions are involved, that present in all its versions. This section explains the driver functions
purpose to facilitate its development for other target platforms.

_s16 CiInit(void);
Performs the initialization of the CAN controller hardware. Initializes the driver data structures.
The function executes once when starting CAN device.
Called from can_backinit.c module.
Return values: normal completion = 0; error < 0.

_s16 CiOpen(_u8 chan, _u8 flags);
Initializes CAN controller channel chan in non-blocking mode with 11-bit CAN-IDs processing.
The function sets hardware modes of the CAN controller channel. Initializes data structures for this
channel, as well as hardware or software acceptance filter.
Called from can_backinit.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• flags – specifies the type of processed CAN identifiers (11-bit and/or 29-bit).
Return values: normal completion = 0; error < 0.

_s16 CiClose(_u8 chan);
Closes CAN channel chan. Disables the interrupts, resets the registers, removes the signal handlers.
The sequence of function calls CiClose(...) → CiOpen(...) performs reinitialization of the CAN
controller channel.
Called from can_backinit.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
Return values: normal completion = 0; error < 0.

_s16 CiStart(_u8 chan);
Changes the controller channel chan to an active state, enabling hardware interrupts.
Called from can_backinit.c and can_canid_dynamic.h modules.
Parameters:
• chan – CAN controller channel number (starts from 0).
Return values: normal completion = 0; error < 0.

_s16 CiStop(_u8 chan);
Changes the controller channel chan to inactive state, disabling hardware interrupts.
Called from can_backinit.c and can_canid_dynamic.h modules.
Parameters:
• chan – CAN controller channel number (starts from 0).
Return values: normal completion = 0; error < 0.

_s16 CiSetFilter(_u8 chan, _u32 acode, _u32 amask);
_s16 CiSetDualFilter(_u8 chan, _u32 acode0, _u32 amask0, _u32 acode1, _u32 amask1);
Sets one or two-level bit-mask acceptance filter. Mask filter can be implemented in hardware, if
supported by CAN controller. However, the performance of modern microcontrollers is sufficient to
implement the acceptance filter in the software driver.
Called from can_canid_dynamic.h module.

20

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Parameters:
• chan – CAN controller channel number (starts from 0).
• acode0 – the required bit values for the first filter.
• mask0 – first filter bit mask (1 = the value of the corresponding bit acode0 taken into account,

0 = the value is ignored).
• acode1 – the required bit values for the second filter.
• amask1 – second filter bit mask (1 = the value of the corresponding bit acode1 taken into

account, 0 = the value is ignored).
Return values: normal completion = 0; error < 0.

_s16 CiSetBaud(_u8 chan, _u8 bt0, _u8 bt1);
Sets CAN network bit rate for the controller channel chan.
Called from can_backinit.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• bt0, bt1 – CAN network bit rate codes which values depend on the CAN controller type.
Return values: normal completion = 0; error < 0.

_s16 CiWrite(_u8 chan, canmsg_t *mbuf, _s16 cnt);
Writes to the controller chan buffer (or output driver queue) one CAN data link layer frame. The
writing if done in non-blocking mode. To improve the dynamic performance of the library it is
recommended to set zero write timeout. For application functions the CANopen library provides
signal-safe, re-entrant CAN frames writing into the program cache.
Called from can_inout.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• *mbuf – a pointer to the CAN data link layer frame structure.
• cnt – the number of frames to write. For the CANopen library is always 1.
Return values: normal completion = 1 (the number of actually written CAN frames); error <= 0.

_s16 CiRead(_u8 chan, canmsg_t *mbuf, _s16 cnt);
Reads from the controller chan buffer (or input driver queue) one CAN data link layer frame to be
processed by the CANopen library. Called from a CAN frame receiving event handler.
Called from can_inout.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• *mbuf – a pointer to the CAN data link layer frame structure.
• cnt – the number of frames to read. For the CANopen library is always 1.
Return values: normal completion = 1 (the number of actually read CAN frames); error <= 0.

_s16 CiSetCB(_u8 chan, _u8 ev, void (*ci_handler) (_s16));
Registers signal (event) handler to receive CAN frames for channel chan. The handler is signal-safe
and can be called directly from the controller hardware interrupts. The handler provides sequential
read of the frames, taken in the controller buffer (or input driver queue) during the processing of the
current CAN frame (re-entrant mode). Note that each handler call performs significant volume of
the software code.
Called from can_backinit.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• ev – the event for which the handler is set (reception of a CAN frame).
• *ci_handler – pointer to the can_read_handler(…) function, that handlers the received frames.

21

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

The function is placed in the can_inout.c module.
Return values: normal completion = 0; error < 0.

_s16 CiSetCB(_u8 chan, _u8 ev, void (*ci_handler) (_s16));
Registers error events handler for channel chan. The handler is signal-safe and can be called
directly from the controller hardware interrupts. In case of overlapping requests to the handler (re-
entrant mode) loss of records in the list of pre-defined errors (object 1003h) is possible. But
anyway, the information will be stored in the error register (object 1001h) Note that each handler
call performs significant volume of the software code.
Called from can_backinit.c module.
Parameters:
• chan – CAN controller channel number (starts from 0).
• ev – the event for which the handler is set (error signal).
• *ci_handler – pointer to the consume_controller_error(…) function, that handlers the error.

The function is placed in the __can_event.c. module.
Return values: normal completion = 0; error < 0.

void ci_propogate_sigs(void);
Propagation function of the CAN driver signals.
If the driver does not provide asynchronous delivery of any incoming signals (events) to the library,
the propagator must be included in the main program loop. Herewith, the events processing latency
depends on the total duration of the main loop.

22

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Communication profile area

All communication objects supported by the CANopen library are presented. Library modules
placement is given relative to the "root" CANopen directory.

NMT objects

• 100Ch

Guard time, milliseconds.
Module \common\can_nmt_master.c for the NMT master and \common\can_nmt_slave.c for the
NMT slave. NMT master object is represented by an array.

• 100Dh

Life time factor.
Module \common\can_nmt_master.c for the NMT master and \common\can_nmt_slave.c for the
NMT slave. NMT master object is represented by an array.

• 1016h

Consumer heartbeat time.
The heartbeat time is given in multiples of milliseconds. Module \common\can_nmt_master.c.
The number of this object sub-indexes is determined by the parameter CAN_NOF_NODES (the
number of CAN nodes). The heartbeat protocol is of higher priority than the node guarding
protocol. The consumer heartbeat time is initialized for each node by the default value
CAN_HBT_CONSUMER_MS. To enable the node guarding protocol, both consumer and
producer heartbeat time must be set to zero.

• 1017h

Producer heartbeat time.
The heartbeat time is given in multiples of milliseconds. Module \common\can_nmt_slave.c. The
heartbeat protocol is of higher priority than the node guarding protocol. The producer heartbeat
time is initialized by the default value CAN_HBT_PRODUCER_MS. To enable the node
guarding protocol, both consumer and producer heartbeat time must be set to zero.

Master and slave objects

• 1005h

COB–ID SYNC message.
Module \common\can_obj_sync.c

• 1006h

Communication cycle period.
The value is given in multiples of microseconds. Module \common\can_obj_sync.c

• 1007h

Synchronous window length.
The time window for synchronous PDOs. The value is given in multiples of microseconds.
Module \common\can_obj_sync.c.

• 1012h

COB–ID time stamp object.
Module \common\can_obj_time.c

• 1019h

Synchronous counter overflow value.
Module \common\can_obj_sync.c.

23

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• 1029h

Error behavior object.
Supported for the NMT slave. Module \common\can_obj_err_behaviour.c.

• 1400h to 15FFh

RPDO communication parameter.
The module \common\can_pdo_obd.c contains up to 512 RPDO communication parameters.
Actual number of the receive PDOs is defined by the parameters
CAN_NOF_PDO_RECV_SLAVE for the slave and CAN_NOF_PDO_RECV_MASTER for the
master. RPDOs are processed in the \common\can_pdo_proc.c module.

• 1600h to 17FFh

RPDO mapping parameter.
For the dynamic PDO bit-mapping the module \common\can_pdo_map_dynamic_bit.h contains
up to 512 RPDO mapping parameters. As required the module loads mapping definitions from
the \pdomapping sub-directory. The definition manager is in the module
\pdomapping\can_mappdo_main.h and the mapping definitions are packaged by 32 RPDOs in
each \pdomapping__map_recv_*_*.h file. Dynamic PDO byte-mapping object dictionary is
created in the \common\can_pdo_map_dynamic_byte.h module. Static PDO byte-mapping is
defined in the modules \common\can_pdo_map_static.h and \pdomapping__map__static.h.

• 1800h to 19FFh

TPDO communication parameter.
The module \common\can_pdo_obd.c contains up to 512 TPDO communication parameters.
Actual number of the transmit PDOs is defined by the parameters
CAN_NOF_PDO_TRAN_SLAVE for the slave and CAN_NOF_PDO_TRAN_MASTER for the
master. TPDOs are processed in the \common\can_pdo_proc.c module.

• 1A00h to 1BFFh

TPDO mapping parameter.
For the dynamic PDO bit-mapping the module \common\can_pdo_map_dynamic_bit.h contains
up to 512 TPDO mapping parameters. As required the module loads mapping definitions from
the \pdomapping sub-directory. The definition manager is in the module
\pdomapping\can_mappdo_main.h and the mapping definitions are packaged by 32 TPDOs in
each \pdomapping__map_tran_*_*.h file. Dynamic PDO byte-mapping object dictionary is
created in the \common\can_pdo_map_dynamic_byte.h module. Static PDO byte-mapping is
defined in modules \common\can_pdo_map_static.h and \pdomapping__map__static.h.

Master objects

• 1280h to 12FFh

SDO client parameter.
The module \master\can_obdsdo_client.c contains up to 128 SDO client parameters. Actual
number of the client SDOs is defined by the parameter CAN_NOF_NODES (the number of
CAN nodes). SDOs are processed in the \common\can_sdo_proc.c module.

Slave objects

• 1000h

Device type.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 1001h

Error register.
Module \common\can_obj_errors.c.

24

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• 1002h

Manufacturer status register.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 1003h

Pre–defined error field.
Module \common\can_obj_errors.c.

• 1008h

Manufacturer device name.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 1009h

Manufacturer hardware version.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 100Ah

Manufacturer software version.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 1010h

Store parameters.
Module \common\can_obj_re_store.c.

• 1011h

Restore default parameters.
Module \common\can_obj_re_store.c.

• 1014h

COB–ID EMCY.
Module \common\can_obj_emcy.c.

• 1015h

Inhibit time EMCY.
The value is given in multiples of 100 microseconds. Module \common\can_obj_emcy.c.

• 1018h

Identity object.
Modules \slave\can_obj_device.c, \slave__can_devices.c, \slave__can_device_*.h.

• 1200h to 127Fh

SDO server parameter.
To optimize target application, the library includes two versions of the SDO server object
dictionary modules. In case of utilizing the only SDO server default parameter the module
\slave\can_obdsdo_server_default.h is used. If the server supports 2 to 128 SDO parameters the
module \slave\can_obdsdo_server_num.h is applied. Access manager to the SDO server
parameter object dictionary is the \slave\can_obdsdo_server.c module. Actual number of the
server SDOs is defined by the parameter CAN_NOF_SDO_SERVER. SDO server parameters
are created in the object dictionary starting with index 1200h. SDOs are processed in the
\common\can_sdo_proc.c module.

25

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CANopen application assembly settings

The parameters are defined in modules \include__can_defines.h and \include__can_node_id.h.
Important note.
In most cases, library units do not control values and ranges of the application assembly parameters
and settings. Therefore, any change should be made only with the case knowledge and the ability to
cope with the consequences.

• CAN_APPLICATION_MODE
The target application general build mode:

MASTER – building the application for the master device (SDO client).
SLAVE – building for the slave device (SDO server).
TEST – test mode. Used for debugging the library in loopback mode. Does not require a
CAN controller and data link layer driver.

• CAN_NMT_MODE
The target application network management (NMT) build mode:

MASTER – NMT master device.
SLAVE – NMT slave device.

• CAN_SLAVE_DEVICE_CLASS
Defines the slave application device profile. It is expected that the software modules supporting
appropriate profile are available.

• СAN_NETWORK_CONTROLLER
CAN controller channel number. The default value.

• CAN_BITRATE_INDEX
CAN bit rate index. The default value.

• CAN_OS_LINUX, CAN_OS_WIN32
The type of operating system for which the CANopen application is built.

CAN_OS_LINUX – Linux.
CAN_OS_WIN32 – Microsoft Windows.

• CAN_ID_MODE
CAN data link identifier size.

CANID11 – 11-bit CAN–ID.
CANID29 – 29-bit CAN–ID (reserved, not used in CANopen).

• CAN_FRAME_READ_MODE
Defines the method of receiving CAN data link frame from the driver.

SIGNAL – frames are read by the signal (for the general purpose operating systems) or CAN
controller hardware interrupt.
POLL – CAN frames are read by polling from the program main loop.

• CAN_BYTE_ORDER
Byte order for numeric data types (integer, real). The data is transferred across the network
starting with the least significant byte.

NORMAL – little-endian.
REVERSE – big-endian.

• CAN_PDO_MAPPING_MODE
Sets PDO mapping method.

DYNAMIC – dynamic PDO mapping.
STATIC – static, non-modifiable PDO mapping.

Dynamic PDO mapping is either bit or byte intended. Static PDO mapping is byte-specific, that

26

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

is, one PDO can contain up to eight objects, the size of each is a multiple of 8 bits. The
maximum number of application objects that are mapped dynamically in one PDO can be
defined individually for each RPDO and TPDO in the range from 1 to 64, taking into account the
granularity (CiA 306). The default value is specified by the CAN_NOF_MAP parameter. For the
static, non-modifiable PDO mapping granularity is zero.

• CAN_DYNAMIC_MAPPING_GRANULARITY
Granularity flag of the dynamic PDO mapping.

MAPBIT – up to 64 application objects can be mapped into one PDO.
MAPBYTE – one PDO can contain up to eight objects, the size of each is a multiple of 8
bits.

• CAN_MASTER_RECVCANID_METHOD
The CAN–IDs processing method for the CANopen master.

DYNAMIC – the dynamic method (linear search).
STATIC – the static method (direct addressing).

• CAN_HARD_ACCEPTANCE_FILTER
CAN controller bit-mask acceptance filter.

AFSINGLE – single-level filtering.
AFDUAL – double-level filtering.

• CAN_LED_INDICATOR
LED indication mode (CiA 303 p. 3)

COMBINED – one bicolor red/green LED is used.
SEPARATE – two single LEDs (red and green) are used.

• CAN_CRC_MODE
CRC calculation method.

CRCTABLE – byte-optimized CRC calculation.
CRCDIRECT – bit-polynomial CRC calculation.

• CAN_OBJECT_EMCY
Emergency object support.

TRUE – EMCY object exists.
FALSE – the object does not exist.

• CAN_OBJECT_TIME
Time stamp object support.

TRUE – time stamp object exists.
FALSE – the object does not exist.

• CAN_OBJECT_RE_STORE
Non-volatile memory storage objects support.

TRUE – store/restore objects exist.
FALSE – the objects do not exist.

The object is also maintained when LSS protocol activated.
• CAN_OBJECT_ERR_BEHAVIOUR

Error behavior object support.
TRUE – the object is supported.
FALSE – the object is not supported.

• CAN_PROTOCOL_BLOCK
SDO block protocol.

TRUE – SDO block protocol supported.
FALSE – block protocol is not supported.

• CAN_PROTOCOL_LSS
LSS protocol.

TRUE – LSS protocol supported.

27

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

FALSE – LSS protocol is not supported.
When LSS protocol is active, non-volatile memory storage object is also activated.

• CAN_NOF_NODES
The number of nodes in the CAN network.
Master objects CAN-IDs are initialized with the generic pre-defined connection set, assuming
that the CAN nodes are numbered sequentially. For example, CAN network with three nodes is
configured for node-IDs 1, 2 and 3. The user application can change this configuration.

• CAN_NOF_RECVCANID_SLAVE
The total number of CAN-IDs, supported by the slave. It uses only the dynamic processing
method.

• CAN_NOF_RECVCANID_MASTER
The total number of CAN-IDs, supported by the master with the dynamic processing method.

• CAN_NOF_PREDEF_ERRORS
The maximum number of errors registered for the pre–defined error field (object 1003h).

• CAN_NOF_ERRBEH_SUBIND
Error behavior object highest sub-index.

• CAN_NOF_MAP
The maximum number of application objects that can be mapped dynamically in one PDO taking
into account the granularity: 1 to 64. For each receive and transmit PDO the parameter can be set
individually in the mapping configuring files: \common\pdomapping__map_recv_*_*.h for
RPDOs and \common\pdomapping__map_tran_*_*.h for TPDOs.

• CAN_NOF_SDO_SERVER
The number of SDO server parameters.
Server SDOs are initialized with the generic pre-defined connection set, taking into account
CAN node-ID. The user application can change this configuration.

• CAN_NOF_PDO_RECV_SLAVE
CAN_NOF_PDO_TRAN_SLAVE
The number of the slave RPDOs.
The number of the slave TPDOs.
Slave PDOs are initialized with the generic pre-defined connection set, taking into account CAN
node-ID. The user application can change this configuration.

• CAN_NOF_SYNCPDO_MASTER
The size of each FIFO buffer for the master synchronous RPDOs and TPDOs.

• CAN_TIMERUSEC
The CANopen timer period in microseconds.
The parameter value should be not less than 100 ms. The timer period can be changed depending
on the resolution requirements for various CANopen objects: SYNC, PDO event timer, inhibit
times, etc.

• CAN_TIMEOUT_RETRIEVE
CAN network data retrieve timeout for the basic SDO client transaction. Specified in
microseconds. In a basic transaction the client transmits request to the server and receives
confirmation.

• CAN_TIMEOUT_READ
Application data read timeout for the basic SDO client transaction. Specified in microseconds.

• CAN_TIMEOUT_SERVER
SDO server basic transaction timeout. Specified in microseconds. In a basic transaction the
server is waiting data request from the client.

• CAN_HBT_PRODUCER_MS
The default value of the producer heartbeat time. Initializes object 1017h.

28

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• CAN_HBT_CONSUMER_MS
The default value of the consumer heartbeat time. Initializes object 1016h for each node.

• CAN_EMCY_INHIBIT_100MCS
The default value of the inhibit time EMCY. Initializes object 1015h.

• CAN_RPDO_TRTYPE
The default value of the RPDO transmission type. Initializes sub-index 2 of the objects 1400h to
15FFh – RPDO communication parameter.

• CAN_TPDO_TRTYPE
The default value of the TPDO transmission type. Initializes sub-index 2 of the objects 1800h to
19FFh – TPDO communication parameter.

• CAN_TPDO_INHIBIT_100MCS
The default value of the TPDO inhibit time. Initializes sub-index 3 of the objects 1800h to 19FFh
– TPDO communication parameter.

• CAN_RPDO_ET_MS
The default value of the RPDO event timer. Initializes sub-index 5 of the objects 1400h to 15FFh
– RPDO communication parameter.

• CAN_TPDO_ET_MS
The default value of the TPDO event timer. Initializes sub-index 5 of the objects 1800h to 19FFh
– TPDO communication parameter.

• CAN_TPDO_SYNC_START
The default PDO SYNC start value. Initializes sub-index 6 of the objects 1800h to 19FFh –
TPDO communication parameter.

• CAN_SIZE_MAXSDOMEM
The maximum size of the object dictionary entry, transferred consistently using the segmented
SDO protocol. This parameter is used by the specialized signal-safe dynamic memory allocation
function to determine the maximum buffer size. If the length of the object dictionary entry
exceeds the specified size, it can only be transferred using a non-buffer mode of the SDO block
protocol. As a rule, block SDO transfer is performed directly between the object dictionary
entries of the transmitting and receiving parties. This is provided by an access to the relevant
entries using a byte pointer. Block protocol ensures the received data consistency only after the
successful completion of the entire data exchange cycle. Otherwise, the corresponding object
dictionary entry should not be used.

• CAN_LEN_VISIBLE_STRING
The maximum length of the visible string data.

• CAN_NODEID_SLAVE
CANopen slave node-ID default number. Valid values are 1 to 127 and 255.

• CAN_SERIAL_NUMBER
CANopen slave device serial number (object 1018hsub4h).

29

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Master and slave functions API

int16 pdo_remote_transmit_request(canindex index);
Generates and sends remote transmit request (RTR) for the PDO, defined by the communication
parameter index. PDO must be defined as RPDO (receive), be valid and RTR allowed on this PDO.
All application objects that are mapped in the corresponding RPDO, should be available at read and
write access.
Parameters:
• index – RPDO communication parameter index.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_COMM_SEND – failed to send frame in the CAN network.
• CAN_ERRET_NODE_STATE – the CAN node is not in operational state.
• CAN_ERRET_OBD_NOOBJECT – PDO configuring error: CANopen object with index does

not exist or it is not RPDO.
• CAN_ERRET_PDO_INVALID – PDO is not valid.
• CAN_ERRET_PDO_NORTR – no RTR allowed on this PDO.

int16 transmit_can_pdo(canindex index);
Generates and sends TPDO, defined by the communication parameter index and with the following
transmission types:
• 0 – synchronous (acyclic);
• 254, 255 – event-driven;
PDO must be defined as TPDO (transmit), be valid and not inhibited.
Parameters:
• index – TPDO communication parameter index.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_COMM_SEND – failed to send frame in the CAN network.
• CAN_ERRET_NODE_STATE – the CAN node is not in operational state.
• CAN_ERRET_OBD_NOOBJECT – PDO configuring error: CANopen object with index does

not exist or it is not TPDO.
• CAN_ERRET_PDO_INVALID – PDO is not valid.
• CAN_ERRET_PDO_ERRMAP – incorrect object size is specified in the PDO mapping or the

total length of the mapped objects exceeds the maximum PDO size (64 bits).
• CAN_ERRET_PDO_INHIBIT – PDO is inhibited.
• CAN_ERRET_PDO_MAP_DEACT – PDO mapping is deactivated.
• CAN_ERRET_PDO_TRTYPE – invalid PDO transmission type.

void produce_time(unsigned32 ms, unsigned16 days);
Generates and sends time stamp object. It is formed in accordance with the TIME_OF_DAY data
type.
Parameters:
• ms – the time in milliseconds after midnight (28 LSB used).
• days – the number of days since January 1, 1984.

30

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Master functions API

void can_sdo_client_transfer(struct sdocltappl *ca);
Performs complete SDO client transaction. Its modes, conditions and results are contained in the
*ca structure.
Parameters:
• ca.operation – defines the basic SDO transfer mode. Specified by the user and modified by the

function. CAN_SDOPER_DOWNLOAD – download or CAN_SDOPER_UPLOAD – upload. If
the data size does not exceed 4 bytes, expedited SDO protocol is used. When the data size is
more than 4 bytes but not exceeding CAN_SIZE_MAXSDOMEM, segmented SDO transfer is
utilized. With a larger amount of data SDO block protocol is used. After the function execution,
the parameter ca.operation contains the mode actually used when SDO transfer:
CAN_SDOPER_(UP/DOWN)_EXPEDITED – expedited,
CAN_SDOPER_(UP/DOWN)_SEGMENTED – segmented,
CAN_SDOPER_(UP/DOWN)_BLOCK – block mode.
The basic mode itself (UPload or DOWNload) is always the same.

• ca.node – SDO server node-ID. Determined independently by the function and is not set by the
user. Contains the slave device node-ID to access the application profile objects, mapped in the
master. Extracted by the function from the SDO client communication parameter (objects 1280h
to 12FFh).

• ca.datasize – the size of transferred data in bytes. Set by the user or determined by the function.
Must be specified when the pointer ca.datapnt is not NULL and in this case not changed by the
function. When the value of the ca.datapnt pointer is NULL, ca.datasize is determined by the
function independently.

• са.datapnt – local buffer pointer. Can be set by the user. If the pointer is not set (NULL) and
SDO block protocol is used, it is determined by the function; otherwise it is not changed. If the
pointer ca.datapnt is set (not NULL), the transferred SDO data will be read from or written to
the local buffer, defined by the pointer. In this case ca.datasize should be specified. When the
pointer ca.datapnt is not set (NULL) slave application object, mapped in the master is used. The
object entry is determined by the parameters ca.node (SDO server / slave node-ID), ca.si.index
(application object index) and ca.si.subind (application object sub-index).

• sdoixs – SDO indexes structure. Specified by the user and is not modified by the function.
ca.si.sdoind – SDO client communication parameter index (1280h to 12FFh). ca.si.index and
ca.si.subind accordingly the index and sub-index of the application object, transferred with the
SDO.

• sdostatus – SDO client transaction status. Set only by the function and contains the transaction
exit code. ca.ss.state – the client transaction exit status. ca.ss.abortcode – SDO abort code, if
the ca.ss.state has the value CAN_TRANSTATE_SDO_SRVABORT. If the transaction is
successful, the exit status is CAN_TRANSTATE_OK. Otherwise, one of the error codes is set:
CAN_TRANSTATE_OBD_ZERO – the object dictionary entry has zero size;
CAN_TRANSTATE_OBD_READ – object dictionary reading error;
CAN_TRANSTATE_OBD_WRITE – object dictionary writing error;
CAN_TRANSTATE_OBD_NOOBJECT – object does not exist in the object dictionary;
CAN_TRANSTATE_OBD_NOSUBIND – sub-index does not exist;
CAN_TRANSTATE_OBD_MALLOC – dynamic buffer allocating error;
CAN_TRANSTATE_SDO_RETRANSMIT – the number of data segment retransmissions

exceeded (block protocol);
CAN_TRANSTATE_SDO_BLKSIZE – incorrect number of segments in the data block (block

protocol);
CAN_TRANSTATE_SDO_SEQNO – incorrect segment number (block protocol);
CAN_TRANSTATE_SDO_CRC – CRC error (block protocol);

31

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CAN_TRANSTATE_SDO_SUB – incorrect sub-command (block protocol);
CAN_TRANSTATE_SDO_TOGGLE – toggle bit error (segmented transfer);
CAN_TRANSTATE_SDO_DATASIZE – invalid data segment size;
CAN_TRANSTATE_SDO_OBJSIZE – the object size known to the client and the server does

not match;
CAN_TRANSTATE_SDO_MODE – client and server transfer modes mismatch (SDO upload

protocol);
CAN_TRANSTATE_SDO_MPX – client and server multiplexors mismatch;
CAN_TRANSTATE_SDO_SRVABORT – SDO abort received;
CAN_TRANSTATE_SDO_INVALID – SDO is invalid;
CAN_TRANSTATE_SDO_WRITERR – SDO transfer error in the CAN network;
CAN_TRANSTATE_SDO_SCSERR – SDO client received from the server invalid or

unknown command;
CAN_TRANSTATE_SDO_TRANS_TIMEOUT – SDO client basic transaction internal

timeout;
CAN_TRANSTATE_SDO_NET_TIMEOUT – SDO client basic transaction network timeout;
CAN_TRANSTATE_SDO_READ_TIMEOUT – data read in the application timeout, basic

transaction was reset;
CAN_TRANSTATE_SDO_NOWORKB – SDO client basic transaction working buffer

overflow;
CAN_TRANSTATE_SDO_NODE – error reading node-ID of the SDO server;
CAN_TRANSTATE_ERROR – generic error.

int16 get_pdo_node(canindex index, cannode *node);
Reading the node-ID for the PDO.
Parameters:
• *node – the node-ID for the PDO communication parameter index.
• index – PDO communication parameter index.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – PDO object does not exist.

int16 put_pdo_node(canindex index, cannode node);
Writing the node-ID for the PDO.
Parameters:
• node – the node-ID for the PDO communication parameter index.
• index – PDO communication parameter index.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – PDO object does not exist.

void nmt_master_command(unsigned8 cs, cannode node);
Generates and sends to the CAN network NMT frame that contains the NMT command cs and the
CAN node number node. The function does not perform any checks of the NMT command and the
node-ID values.
Parameters:
• cs – NMT command specifier.
• node – the node-ID.

32

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

canbyte *node_get_manstan_objpointer(cannode node, canindex index, cansubind subind);
Getting byte pointer to the slave application profile object, mapped in the master.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
Return values:
• not NULL – byte pointer to the object defined by the function arguments.
• NULL – the object is not accessible through a pointer.

int16 node_see_manstan_access(cannode node, canindex index, cansubind subind);
Getting access bit mask to the slave application profile object, mapped in the master.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
Return values: access bit mask >= 0; error < 0.
• CAN_MASK_ACCESS_PDO – PDO mapping allowed for this object (LSB = 1).
• CAN_MASK_ACCESS_RO – read access for the object (LSB+1 = 1).
• CAN_MASK_ACCESS_WO – write access for the object (LSB+2 = 1).
• CAN_MASK_ACCESS_RW – read and write access (LSB+1 = 1 and LSB+2 = 1).
• CAN_ERRET_OBD_INVNODE – invalid CAN node.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int32 node_get_manstan_objsize(cannode node, canindex index, cansubind subind, int16
unit);
Object size request from the slave application profile, mapped in the master. This function also
detects the presence of the corresponding object in the dictionary. The size may be represented in
bytes (unit = BYTES) or in bits (unit = BITS). The size in bits is used for bit-specific PDO
mapping.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
• unit – object size measurement unit: bytes (BYTES) or bits (BITS).
Return values: object size > 0; error < 0.
• > 0 – the size of the object in units.
• CAN_ERRET_OBD_INVNODE – invalid CAN node.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int16 node_get_manstan_objtype(cannode node, canindex index, cansubind subind);
Object type request from the slave application profile, mapped in the master.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
Return values: object type > 0; error < 0.
• > 0 – static data type index (0001h to 001Fh).
• CAN_ERRET_OBD_INVNODE – invalid CAN node.

33

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int16 node_read_manstan_objdict(cannode node, canindex index, cansubind subind, canbyte
*data);
Reading an object from the slave application profile, mapped in the master. The result is converted
into a byte format and located at *data. The byte order is not changed. The application must
allocate a buffer large enough to hold the entire object. The size of the object can be determined
using the function node_get_manstan_objsize(...).
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_INVNODE – invalid CAN node.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_WRITEONLY – attempt to read a write only object.

int16 node_read_manstan_objdict_network(cannode node, canindex index, cansubind subind,
canbyte *data);
Reading an object from the slave application profile, mapped in the master. The byte order is
arranged in a network transfer sequence. If CAN_BYTE_ORDER = NORMAL the function fully
corresponds to node_read_manstan_objdict(...). When CAN_BYTE_ORDER = REVERSE the byte
order for the basic numeric data types is reversed.
Parameters:

see node_read_manstan_objdict(...).
Return values: normal completion = 0; error < 0.

see node_read_manstan_objdict(...).

int16 node_write_manstan_objdict(cannode node, canindex index, cansubind subind, canbyte
*data);
Writing an object to the slave application profile, mapped in the master. The function places the
object located at *data in the object dictionary entry. The byte order is not changed. Before calling
the function, the application must convert the data into a byte format.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_INVNODE – invalid CAN node.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_READONLY – attempt to write a read only object.

34

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

int16 node_write_manstan_objdict_network(cannode node, canindex index, cansubind
subind, canbyte *data);
Writing an object to the slave application profile, mapped in the master. The byte order is arranged
in a local application sequence. If CAN_BYTE_ORDER = NORMAL the function fully
corresponds to node_write_manstan_objdict(...). When CAN_BYTE_ORDER = REVERSE the
byte order for the basic numeric data types is reversed.
Parameters:

see node_write_manstan_objdict(...).
Return values: normal completion = 0; error < 0.

see node_write_manstan_objdict(...).

int16 client_see_access(canindex index, cansubind subind);
Getting access bit mask to the client (master) communication profile object.
Parameters:
• index – communication object index.
• subind – communication object sub-index.
Return values: access bit mask >= 0; error < 0.
• CAN_MASK_ACCESS_PDO – PDO mapping allowed for this object (LSB = 1).
• CAN_MASK_ACCESS_RO – read access for the object (LSB+1 = 1).
• CAN_MASK_ACCESS_WO – write access for the object (LSB+2 = 1).
• CAN_MASK_ACCESS_RW – read and write access (LSB+1 = 1 and LSB+2 = 1).
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int32 client_get_object_size(canindex index, cansubind subind, int16 unit);
Object size request from the client (master) communication profile. This function also detects the
presence of the corresponding object in the dictionary. The size may be represented in bytes (unit =
BYTES) or in bits (unit = BITS). The size in bits is used for bit-specific PDO mapping.
Parameters:
• index – communication object index.
• subind – communication object sub-index.
• unit – object size measurement unit: bytes (BYTES) or bits (BITS).
Return values: object size > 0; error < 0.
• > 0 – the size of the object in units.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int16 client_read_object_dictionary(canindex index, cansubind subind, canbyte *data);
Reading an object from the client (master) communication profile. The result is converted into a
byte format and located at *data. The byte order is not changed. The application must allocate a
buffer large enough to hold the entire object. The size of the object can be determined using the
function client_get_object_size(...).
Parameters:
• index – communication object index.
• subind – communication object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_WRITEONLY – attempt to read a write only object.

35

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

int16 client_write_object_dictionary(canindex index, cansubind subind, canbyte *data);
Writing an object to the client (master) communication profile. The function places the object
located at *data in the object dictionary entry. The byte order is not changed. Before calling the
function, the application must convert the data into a byte format.
Parameters:
• index – communication object index.
• subind – communication object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_READONLY – attempt to write a read only object.

int16 client_read_obd_u32(cannode node, canindex index, cansubind subind, unsigned32
*du32);
Reading an object up to 32 bits size. The function is to facilitate access to objects whose length does
not exceed 32 bits. It reads an object dictionary entry, defined by the node, index and subind. The
result is located at *du32. If node = 0, data is read from the client (master) communication profile,
otherwise from the slave application profile, mapped in the master. The object size must not exceed
32 bits, otherwise the behavior of the function and the result is unpredictable.
Parameters:

see client_read_object_dictionary(...), node_read_manstan_objdict(...).
Return values: normal completion = 0; error < 0.

see client_read_object_dictionary(...), node_read_manstan_objdict(...).

int16 client_write_obd_u32(cannode node, canindex index, cansubind subind, unsigned32
du32);
Writing an object up to 32 bits size. The function is to facilitate access to objects whose length does
not exceed 32 bits. It puts value du32 to the object dictionary entry, defined by the node, index and
subind. If node = 0, data is written to the client (master) communication profile, otherwise to the
slave application profile, mapped in the master. The object size must not exceed 32 bits, otherwise
the behavior of the function and the result is unpredictable.
Parameters:

see client_write_object_dictionary(...), node_write_manstan_objdict(...).
Return values: normal completion = 0; error < 0.

see client_write_object_dictionary(...), node_write_manstan_objdict(...).

int16 produce_emcy_default(unsigned16 errorcode);
Generates the master emergency message. The message is logged, but not transmitted to the CAN
network.
Parameters:
• errorcode – emergency error code.
Return values: normal completion = 0.
• CAN_RETOK – normal completion.

36

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Slave functions API

canbyte *server_get_object_pointer(canindex index, cansubind subind);
Getting byte pointer to the slave device object.
Parameters:
• index – slave object index.
• subind – slave object sub-index.
Return values:
• not NULL – byte pointer to the object defined by the function arguments.
• NULL – the object is not accessible through a pointer.

int16 server_see_access(canindex index, cansubind subind);
Getting access bit mask to the slave device object.
Parameters:
• index – slave object index.
• subind – slave object sub-index.
Return values: access bit mask >= 0; error < 0.
• CAN_MASK_ACCESS_PDO – PDO mapping allowed for this object (LSB = 1).
• CAN_MASK_ACCESS_RO – read access for the object (LSB+1 = 1).
• CAN_MASK_ACCESS_WO – write access for the object (LSB+2 = 1).
• CAN_MASK_ACCESS_RW – read and write access (LSB+1 = 1 and LSB+2 = 1).
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int32 server_get_object_size(canindex index, cansubind subind, int16 unit);
Object size request from the slave device profile. This function also detects the presence of the
corresponding object in the dictionary. The size may be represented in bytes (unit = BYTES) or in
bits (unit = BITS). The size in bits is used for bit-specific PDO mapping.
Parameters:
• index – slave object index.
• subind – slave object sub-index.
• unit – object size measurement unit: bytes (BYTES) or bits (BITS).
Return values: object size > 0; error < 0.
• > 0 – the size of the object in units.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int16 server_get_object_type(canindex index, cansubind subind);
Object type request from the slave device profile.
Parameters:
• index – slave object index.
• subind – slave object sub-index.
Return values: object type > 0; error < 0.
• > 0 – static data type index (0001h to 001Fh).
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.

int16 server_read_object_dictionary(canindex index, cansubind subind, canbyte *data);
Reading an object from the slave device profile. The result is converted into a byte format and
located at *data. The byte order is not changed. The application must allocate a buffer large enough
to hold the entire object. The size of the object can be determined using the function

37

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

server_get_object_size(...).
Parameters:
• index – slave object index.
• subind – slave object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_WRITEONLY – attempt to read a write only object.

int16 server_read_obd_network(canindex index, cansubind subind, canbyte *data);
Reading an object from the slave device profile. The byte order is arranged in a network transfer
sequence. If CAN_BYTE_ORDER = NORMAL the function fully corresponds to
server_read_object_dictionary(...). When CAN_BYTE_ORDER = REVERSE the byte order for the
basic numeric data types is reversed.
Parameters:

see server_read_object_dictionary(...).
Return values: normal completion = 0; error < 0.

see server_read_object_dictionary(...).

int16 server_write_object_dictionary(canindex index, cansubind subind, canbyte *data);
Writing an object to the slave device profile. The function places the object located at *data in the
object dictionary entry. The byte order is not changed. Before calling the function, the application
must convert the data into a byte format.
Parameters:
• index – slave object index.
• subind – slave object sub-index.
• *data – byte pointer to the data.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_OBD_NOOBJECT – object does not exist in the object dictionary.
• CAN_ERRET_OBD_NOSUBIND – sub-index does not exist.
• CAN_ERRET_OBD_READONLY – attempt to write a read only object.

int16 server_write_obd_network(canindex index, cansubind subind, canbyte *data);
Writing an object to the slave device profile. The byte order is arranged in a local application
sequence. If CAN_BYTE_ORDER = NORMAL the function fully corresponds to
server_write_object_dictionary(...). When CAN_BYTE_ORDER = REVERSE the byte order for
the basic numeric data types is reversed.
Parameters:

see server_write_object_dictionary(...).
Return values: normal completion = 0; error < 0.

see server_write_object_dictionary(...).

int16 server_read_obd_u32(canindex index, cansubind subind, unsigned32 *du32);
Reading slave profile object up to 32 bits size. The function is to facilitate access to objects whose
length does not exceed 32 bits. It reads an object dictionary entry, defined by the index and subind.
The result is located at *du32. The object size must not exceed 32 bits, otherwise the behavior of
the function and the result is unpredictable.
Parameters:

38

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

see server_read_object_dictionary(...).
Return values: normal completion = 0; error < 0.

see server_read_object_dictionary(...).

int16 server_write_obd_u32(canindex index, cansubind subind, unsigned32 du32);
Writing slave profile object up to 32 bits size. The function is to facilitate access to objects whose
length does not exceed 32 bits. It puts value du32 to the object dictionary entry, defined by the
index and subind. The object size must not exceed 32 bits, otherwise the behavior of the function
and the result is unpredictable.
Parameters:

see server_write_object_dictionary(...).
Return values: normal completion = 0; error < 0.

see server_write_object_dictionary(...).

int16 produce_emcy(unsigned16 errorcode, unsigned16 addinf, canbyte *mserr);
Generates an emergency message with full information about the error. Sets in the pre–defined error
field (object 1003h) error code and additional information. Then sends the emergency message with
the errorcode, the current state of the error register and manufacturer-specific error code *mserr
(the first five bytes used). Emergency object must be valid and not inhibited.
Parameters:
• errorcode – emergency error code.
• addinf – pre-defined error field additional information.
• *mserr – manufacturer-specific error code (5 bytes).
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_EMCY_INVALID – Emergency object is invalid.
• CAN_ERRET_EMCY_INHIBIT – Emergency is inhibited.
• CAN_ERRET_NODE_STATE – the CAN node is in stropped of initializing state.
• CAN_ERRET_COMM_SEND – failed to send frame in the CAN network.

int16 produce_emcy_default(unsigned16 errorcode);
Creates an emergency message with minimal information about the error. Only error code is used.
Additional information and manufacturer-specific error code are missing (reset to zero).
Parameters:
• errorcode – emergency error code.
Return values: normal completion = 0; error < 0.

see produce_emcy(...).

void clear_error_register(unsigned8 mask);
Bitwise clearing of the error register (object 1001h). Clears error register bits for which the mask is
set to 1. Generic error (bit 0) is reset only when all other errors are zero. In this case an urgent
message with zero emergency code is issued (error reset or no error). Error codes in the range 1000h

to 10FFh set only generic error (bit 0) of the error register which, in the absence of other errors, will
be reset with any mask value.
Parameters:
• mask – bit mask.

int16 get_flash_nodeid();
Reading CAN node-ID value from non-volatile memory.
Return values: CAN node-ID >= 0; error < 0.
• CAN_ERRET_FLASH_DATA – data in non-volatile memory is erroneous or inconsistent.

39

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

• CAN_ERRET_FLASH_VALUE – a value is not recorded in non-volatile memory.

int16 get_flash_bitrate_index();
Reading CAN bit rate index from non-volatile memory.
Return values: bit rate index >= 0; error < 0.

see get_flash_nodeid().

int16 put_flash_nodeid(cannode node);
Store CAN node-ID value in non-volatile memory.
Parameters:
• node – storable node-ID.
Return values: normal completion = 0; error < 0.
• CAN_RETOK – normal completion.
• CAN_ERRET_FLASH_INIT – non-volatile memory initializing error.
• CAN_ERRET_FLASH_DATA – the data recorded in non-volatile memory is erroneous or

inconsistent.

int16 put_flash_bitrate_index(unsigned8 br);
Store CAN bit rate index in non-volatile memory.
Parameters:
• br – storable bit rate index.
Return values: normal completion = 0; error < 0.

see put_flash_nodeid(...).

40

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

User edited functions API

Final programming of these functions is carried out depending on the requirements of the target
application.

unsigned32 read_dev_type_object(canindex index, cansubind subind);
Specifies the description of the device type (object 1000h), manufacturer status register (object
1002h) and the identity object (1018h). Modules \slave__can_device_*.h for different devices.
Called when reading the corresponding object dictionary indexes.
Parameters:
• index – object dictionary index.
• subind – object dictionary sub-index.
Return values:
The corresponding object value.

void read_dev_string_object(canindex index, cansubind subind, canbyte *data);
Specifies a symbolic description of the device: manufacturer device name (object 1008h),
manufacturer hardware version (object 1009h) and manufacturer software version (object 100Ah).
Modules \slave__can_device_*.h for different devices. Called when reading the corresponding
object dictionary indexes.
Parameters:
• index – object dictionary index.
• subind – object dictionary sub-index.
• *data – byte pointer to the visible string, which is a symbolic description of the device.

cannode get_node_id(void);
Returns CANopen device node-ID. Module \common__can_init.c. For master application the
function should return zero.
Return value:
• CAN device node-ID (1 to 127 or 255 for slave devices). Read from non-volatile memory, or set,

for example, by switches.

unsigned8 get_bit_rate_index(void);
Returns CAN bit rate index. Module \common__can_init.c.
Return value:
• CAN bit rate index. Read from non-volatile memory, or set, for example, by switches.

unsigned32 get_serial_number(void);
Returns CANopen slave device serial number. Module \common__can_init.c.
Return value:
• CANopen slave device serial number (object 1018hsub4h).

void consume_sync(unsigned8 sc);
Processes the SYNC object. Module \common__can_events.c. Called upon receipt of the
synchronization object.
Parameters:
• sc – SYNC counter value (1 to 240).

void no_sync_event(void);
The sync message has not been received within the configured communication cycle period timeout
(object 1006h). Module \common__can_events.c. Provides at least the corresponding led

41

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

indication.

void consume_time(canframe *cf);
Processes the TIME object. Module \common__can_events.c. Called upon receipt of the time
stamp object and can be used to correct the device local time.
Parameters:
• *cf – CAN frame containing the time stamp object in the format of the TIME_OF_DAY

structure.

void consume_controller_error(canev ev);
CAN interface error signal handler. Module \common__can_events.c. Bus-off condition of the
CAN controller is processed according to the settings of the object 1029h (error behavior object).
Handling of other errors provides the transfer of the corresponding emergency message and led
indication. CAN controller error codes are defined in the CAN data link driver header file.
Parameters:
• ev (int16) – error code:

CIEV_WTOUT – write timeout occurred,
CIEV_EWL – error warning limit,
CIEV_BOFF – bus off,
CIEV_HOVR – hardware overrun,
CIEV_SOVR – software overrun.

void pdo_activated_master(cannode node, canindex index, cansubind subind);
Reports master PDO activation. Module \common__can_events.c. The function informs
application that the PDO object was successfully written to the slave application profile, mapped in
the master.
Parameters:
• node – the slave node-ID.
• index – mapped application object index.
• subind – mapped application object sub-index.

void pdo_activated_slave(canindex index, cansubind subind);
Reports slave PDO activation. Module \common__can_events.c. The function informs application
that the PDO object was successfully written to the slave device profile.
Parameters:
• index – slave object index.
• subind – slave object sub-index.

void master_emcy(unsigned16 errorcode);
The master emergency. Module \common__can_events.c. Called when the errorcode event
appears in the master. The emergency message is not transmitted in the CAN network.
Parameters:
• errorcode – emergency error code.

void consume_emcy(canframe *cf);
Handles an emergency message. Module \common__can_events.c. Called upon receipt of the
emergency message from any slave device.
Parameters:
• *cf – emergency CAN frame.

42

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

void can_client_state(struct sdocltappl *ca);
Information about the state of the SDO client transaction. Module \common__can_events.c.
Reports the status after the transaction completion.
Parameters:
• *ca – the structure used by the SDO client when exchanging data with SDO protocol.

void heartbeat_event(cannode node);
Handles the heartbeat event with the state 'occurred' for the node. Module
\common__can_events.c. Called if the heartbeat is not received within the heartbeat consumer
time.
Parameters:
• node – NMT slave node-ID.

void heartbeat_resolved(cannode node);
Handles the heartbeat event with the state 'resolved' for the node. Module \common__can_events.c.
Called when resuming receipt of the heartbeat messages.
Parameters:
• node – NMT slave node-ID.

void node_guarding_event(cannode node);
Handles the node guarding event with the state 'occurred' for the node. Module
\common__can_events.c.
Parameters:
• node – NMT slave node-ID.

void node_guarding_resolved(cannode node);
Handles the node guarding event with the state 'resolved' for the node. Module
\common__can_events.c.
Parameters:
• node – NMT slave node-ID.

void bootup_event(cannode node);
Handles the boot-up event for the node. Module \common__can_events.c.
Parameters:
• node – NMT slave node-ID.

void node_state_event(cannode node, canbyte state);
Logs the NMT state of the node, received using the heartbeat or node guarding protocol. Module
 \common__can_events.c. Called each time when receiving NMT state of any slave node.
Parameters:
• node – NMT slave node-ID.
• state – NMT state of the node.

void life_guarding_event(void);
Handles the life guarding event with the state 'occurred'. Module \common__can_events.c. Invoked
if the NMT slave has not been polled during its lifetime.

void life_guarding_resolved(void);
Handles the life guarding event with the state 'resolved'. Module \common__can_events.c. Invoked
if the NMT slave polling has resumed.

43

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

void no_pdo_event(canindex index);
An expected PDO has not been received before the event-timer elapsed. Module
\common__can_events.c. Provides at least the corresponding emergency message generation and
led indication.
Parameters:
• index – RPDO communication parameter index.

void can_timer_overlap(void);
The CANopen timer ticks overlap was registered. Module \common__can_events.c. Provides at
least the corresponding emergency message generation.

void can_cache_overflow(canbyte state);
CANopen cache overflow. Module \common__can_events.c. Provides at least the error
registration.
Parameters:
• state – NMT state of the CAN node.

void can_init_pdo_map(void);
The initialization of static PDO mapping. Editable PDO components are placed in the module
\common\pdomapping__map__static.h. Only used in the CANopen slave, when the parameter
CAN_PDO_MAPPING_MODE = STATIC. Specifies mapping of all received and transmitted
PDOs in the static mapping mode.

44

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

General management functions API

void can_set_datalink_layer(unsigned8 mode);
Setting of logical access to the CAN network driver. Performs enabling and disabling of the CAN
data link layer on write. Attempts to output data to the disconnected CAN network may cause
significant delays due to the timeouts in the driver and in the CANopen library. NMT slave device
is logically reconnected to the CAN network upon receipt of any intended NMT command.
Parameters:
• mode – logical access to the CAN network driver. ON – normal operation, all frames are

transmitted to the CAN network. OFF – all pending and sent frames will be cancelled. Upon the
library initialization normal mode (ON) is set.

45

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

System–dependent functions API

These functions are placed in the relevant modules of the CANopen root directory. Module
__can_system.c is the system–dependent units manager.

void can_sleep(int32 microseconds);
Time delay function.
Parameters:
• microseconds – the time delay in microseconds. The exact time delay is determined by the

resolution of the corresponding system timer. Any positive value of the parameter should
provide a non-zero delay.

void can_init_system_timer(void (*handler)(void));
The CANopen timer initialization. The timer signal should have a high priority and to block other
signals or the operating system threads during its own execution. The timer handler function is
signal-safe and may be assigned directly to hardware interrupts, including not self-blocking. In the
case when the timer is executed as a separate operating system thread, the OS manager may not
guarantee the continuous execution of this thread. In this case, it is recommended to make the timer
handler code (function background() of the can_backinit.c module) as a single critical section.
Parameters:
• handler – the timer handler function, has the prototype void background(void).

void can_cancel_system_timer(void);
Cancel the CANopen timer. Stops or shuts down the timer.

void init_critical(void);
void enter_critical(void);
void leave_critical(void);
Initialization, entry and exit of a critical section. The functions are designed to ensure the atomicity
of the semaphore operations and the continuity of the code segments when using the library in a
multithread environment. In this case the CANopen timer and CAN frames handler are run as
separate threads. This situation occurs for example, when using Windows OS. The functions are
implemented by using macros CAN_CRITICAL_INIT, CAN_CRITICAL_BEGIN and
CAN_CRITICAL_END defined in the can_macros.h module. For single-thread applications
(microcontrollers, operating systems that support signals) the library code provides the opportunity
to work with non-atomic semaphores and the macros can be empty.

void enable_can_transmitter(void);
void disable_can_transmitter(void);
Unlock (enable) and lock (disable) the transmitting CAN transceiver. The functions are designed to
prevent the false signals transmission in the CAN network at device power-on. The transceiver is
unlocked while initializing the CAN subsystem (module can_backinit.c).

46

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

LED indication module

CANopen NMT slave device LED indication is implemented in accordance with the
indicator specification CiA 303 part 3 v. 1.4. Either two LEDs ERROR (red) and RUN (green) or
one bicolor (red/green) LED can be utilized. The led type is configured with the
CAN_LED_INDICATOR parameter. In case, there is a conflict between turning the bicolor LED
on green versus red, the LED is turned on red. For correct operation of the LEDs in all modes the
CANopen timer period should not exceed 50000 microseconds (frequency greater than 20 Hz).

Error LED (red)

Error LED Description

Off No error.

Red LED if turned OFF when the device receives
any intended NMT command.

Flickering alternately with green LED The auto-bitrate detection is in progress or LSS
services are in progress.

Blinking General configuration error.

Single flash Warning limit reached.
At least one of the error counters of the CAN
controller has reached or exceeded the warning
level (too many error frames).

Double flash A guard event (NMT-slave or NMT-master) or a
heartbeat event (heartbeat consumer) has occurred.

Triple flash The sync message has not been received within the
configured communication cycle period time out
(object 1006h).

Quadruple flash An expected PDO has not been received before the
event-timer elapsed.

On The CAN controller is bus off.

Run LED (green)

Run LED Description

Flickering alternately with red LED The auto-bitrate detection is in progress or LSS
services are in progress.

Blinking The device is in state PRE-OPERATIONAL.

Single flash The device is in state STOPPED.

Double flash Reserved.

Triple flash A software download is running on the
device.

Quadruple flash Reserved.

On The device is in state OPERATIONAL.

47

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Both LEDs turn off when the device receives invalid NMT command from the CANopen network,
while its NMT state is not changed.

Physical LED control functions

Function stubs, which body has to be the call to the LED controlling registers.

void green_led_on(void);
Green LED physical ON.

void green_led_off(void);
Green LED physical OFF.

void red_led_on(void);
Red LED physical ON.

void red_led_off(void);
Red LED physical OFF.

LED functions API

void set_led_red_on(void);
void set_led_red_off(void);

Red LED ON and OFF.

void set_led_green_on(void);
void set_led_green_off(void);

Green LED ON and OFF.

void set_leds_flickering(void);
Red and Green LEDs flickering alternately.

void set_led_red_blinking(void);
Red LED blinking.

void set_led_green_blinking(void);
Green LED blinking.

void set_led_red_single_flash(void);
void set_led_red_double_flash(void);
void set_led_red_triple_flash(void);
void set_led_red_quadruple_flash(void);

Red LED single, double, triple and quadruple flash respectively.

void set_led_green_single_flash(void);
void set_led_green_double_flash(void);
void set_led_green_triple_flash(void);
void set_led_green_quadruple_flash(void);

Green LED single, double, triple and quadruple flash respectively.

48

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Library application examples

The CANopen library test application examples are given in the modules:
• \master__can_test_application.c – client operations and slave test profile object dictionary

mapping.
• \slave__obdms_slave_test.h – object dictionary example for the slave test profile.
• \master__obdms_master_test.h – object dictionary mapping example for the slave test profile.
All functions of these modules are commented in detail.

49

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CAN node-ID and bit rate index

CAN node-ID

Node-ID Usage

1 to 127 Valid CANopen node-IDs.

255 Not configured CANopen device.

Standard CiA bit timing parameter table
The table_selector for /CiA301/ bit timing table is 0 (zero).

Definition of table_index for the table.

table_index Bit rate
0 1000 kbit/s

1 800 kbit/s
2 500 kbit/s

3 250 kbit/s
4 125 kbit/s

5 reserved
6 50 kbit/s

7 20 kbit/s
8 10 kbit/s

9 Automatic bit rate
detection

50

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CANopen error codes

SDO abort codes

Abort code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specifier not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h The number and length of the objects to be mapped would exceed PDO length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to a hardware error.

0607 0010h Data type does not match, length of service parameter does not match.

0607 0012h Data type does not match, length of service parameter too high.

0607 0013h Data type does not match, length of service parameter too low.

0609 0011h Sub-index does not exist.

0609 0030h Invalid value for parameter (download only).

0609 0031h Value of parameter written too high (download only).

0609 0032h Value of parameter written too low (download only).

0609 0036h Maximum value is less than minimum value.

060A 0023h Resource not available: SDO connection.

0800 0000h General error.

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h Data cannot be transferred or stored to the application because of local control.

0800 0022h Data cannot be transferred or stored to the application because of the present
device state.

0800 0023h Object dictionary dynamic generation fails or no object dictionary is present.

0800 0024h No data available.

51

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Emergency error code classes

Error code Description

00xxh Error reset or no error.

10xxh Generic error.

20xxh Current.

21xxh Current, CANopen device input side.

22xxh Current inside the CANopen device.

23xxh Current, CANopen device output side.

30xxh Voltage.

31xxh Mains voltage.

32xxh Voltage inside the CANopen device.

33xxh Output voltage.

40xxh Temperature.

41xxh Ambient temperature.

42xxh CANopen device temperature.

50xxh CANopen device hardware.

60xxh CANopen device software.

61xxh Internal software.

62xxh User software

63xxh Data set.

70xxh Additional modules.

80xxh Monitoring.

81xxh Communication.

82xxh Protocol error.

90xxh External error.

F0xxh Additional functions.

FFxxh CANopen device specific.

Emergency error codes

Error code Description

0000h Error reset or no error.

1000h Generic error.

2000h Current – generic error.

2100h Current, CANopen device input side – generic.

2200h Current inside the CANopen device – generic.

2300h Current, CANopen device output side – generic.

52

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

3000h Voltage – generic error.

3100h Mains voltage – generic.

3200h Voltage inside the CANopen device – generic.

3300h Output voltage – generic.

4000h Temperature – generic error.

4100h Ambient temperature – generic.

4200h Device temperature – generic.

5000h CANopen device hardware – generic error.

6000h CANopen device software – generic error.

6100h Internal software – generic.

6180h CANopen cache overflow.

6190h CANopen timer initialization error.

6191h CANopen timer overlap.

61A0h Non-volatile memory data invalid (CRC error).

61A1h Non-volatile memory operations error.

6200h User software – generic.

6300h Data set – generic.

7000h Additional modules – generic error.

8000h Monitoring – generic error.

8100h Communication – generic.

8110h CAN overrun (objects lost).

8120h CAN in error passive mode.

8130h Life guard error or heartbeat error.

8140h Recovered from bus off.

8150h CAN-ID collision.

8180h CAN controller event «hardware overrun».

8181h CAN controller event «software overrun».

8182h CAN controller event «error warning limit».

8183h CAN controller event «write timeout».

8200h Protocol error – generic.

8210h PDO not processed due to length error.

8220h PDO length exceeded.

8230h DAM MPDO not processed, destination object not available.

8240h Unexpected SYNC data length.

8250h RPDO timeout.

9000h External error – generic error.

53

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

F000h Additional functions – generic error.

FF00h Device specific – generic error.

Color marked are manufacturer-specific error codes.
Errors 6180h, 6190h, 61A0h and 61A1h are recorded in the pre-defined error field (object 1003h), but
do not initiate EMCY, because the Emergency service can not be executed.

54

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

Generic pre-defined connection set

Broadcast objects

CAN-ID Communication object Object index

0 NMT ---

128 (80h) SYNC 1005h

256 (100h) TIME 1012h

Peer-to-peer objects

CAN-ID Communication object Object index

129 (81h) – 255 (FFh) EMCY for CAN node-IDs 1 to 127 1014h

385 (181h) – 511 (1FFh) TPDO 1 for CAN node-IDs 1 to 127 1800h

513 (201h) – 639 (27Fh) RPDO 1 for CAN node-IDs 1 to 127 1400h

641 (281h) – 767 (2FFh) TPDO 2 for CAN node-IDs 1 to 127 1801h

769 (301h) – 895 (37Fh) RPDO 2 for CAN node-IDs 1 to 127 1401h

897 (381h) – 1023 (3FFh) TPDO 3 for CAN node-IDs 1 to 127 1802h

1025 (401h) – 1151 (47Fh) RPDO 3 for CAN node-IDs 1 to 127 1402h

1153 (481h) – 1279 (4FFh) TPDO 4 for CAN node-IDs 1 to 127 1803h

1281 (501h) – 1407 (57Fh) RPDO 4 for CAN node-IDs 1 to 127 1403h

1409 (581h) – 1535 (5FFh) SDO server->client for CAN node-IDs 1 to 127 1200h

1537 (601h) – 1663 (67Fh) SDO client->server for CAN node-IDs 1 to 127 1200h

1793 (701h) – 1919 (77Fh) NMT error control for CAN node-IDs 1 to 127 1016h, 1017h

Other objects

CAN-ID Communication object

2020 (7E4h) LSS slave device messages

2021 (7E5h) LSS master device messages

Restricted CAN-IDs
The restricted CAN-ID shall not be used by any configurable communication object, neither for
SYNC, TIME, EMCY, PDO or SDO.

CAN-ID Communication object

0 NMT

1 (001h) – 127 (07Fh) reserved

257 (101h) – 384 (180h) reserved

1409 (581h) – 1535 (5FFh) default SDO server->client

1537 (601h) – 1663 (67Fh) default SDO client->server

55

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

1760 (6E0h) – 1791 (6FFh) reserved

1793 (701h) – 1919 (77Fh) NMT error control

1920 (780h) – 2047 (7FFh) Reserved

56

Marathon Ltd. The CANopen Library, version 2.3 May 15, 2016

CANopen conformance test

CANopen conformance test plan (CiA 310) is designed to test devices utilizing the CANopen
protocol. The device is tested for CiA 301 compliance as CAN network node. Its internal logic
(application profile) is not verified. Any device that supports the CANopen protocol, must be
approved (certified) using the conformance test.
CANopen conformance test software is distributed by the CAN in Automation. For CAN network
access the conformance test uses a standardized set of functions, COTI (CANopen Test Interface).
CAN interface manufacturer must provide COTI library for its CAN adapters.

CANopen conformance test implements the following operations:
• Check the device electronic data sheet (EDS) for compliance with the CiA 306.
• Testing network protocol according to the CiA 301. Generic pre-defined connection set with 11-

bit CAN-IDs is used.
• Verification of compliance of the device object dictionary to its electronic specification (EDS).

In 2013 CiA released the third major version of the CANopen conformance test that supports the
updated CiA standards. In some cases, the new version of the test performs more rigorous checking
of CANopen protocols and the device object dictionary. Marathon CANopen library v. 2.3 and later
was adapted for passing the conformance test of the third version.

57

	Basic features
	The functionality of the library
	The library limitations
	Optimization of the library source code

	Documentation
	Abbreviations and definitions
	Basic data types

	Revision history
	Version management

	Assembly and installation of the library
	CAN driver installation
	The library layout
	Windows operational system
	Linux operational system

	Implementation technology of the library functions and protocols
	CAN controller acceptance filter
	Incoming frame CAN–IDs processing technique
	Restricted CAN identifiers
	Object dictionary implementation
	SDO protocol implementation
	LSS protocol implementation
	Non-volatile memory storage module

	CANopen library API data types and structures
	Library data types
	Data link layer driver data types
	Data structures
	Auxiliary data structures
	API data structures

	Library modules placement
	The functionality of the library modules
	CAN network data link layer modules
	SDO transaction modules
	CANopen objects assembly and processing modules
	Communication profile object dictionary
	Application profiles object dictionary
	General purpose modules
	Initialization and events processing modules
	Other modules

	CAN data link layer driver API
	Communication profile area
	NMT objects
	Master and slave objects
	Master objects
	Slave objects

	CANopen application assembly settings
	Master and slave functions API
	Master functions API
	Slave functions API
	User edited functions API
	General management functions API
	System–dependent functions API
	LED indication module
	Error LED (red)
	Run LED (green)
	Physical LED control functions
	LED functions API

	Library application examples
	CAN node-ID and bit rate index
	CAN node-ID
	Standard CiA bit timing parameter table

	CANopen error codes
	SDO abort codes
	Emergency error code classes
	Emergency error codes

	Generic pre-defined connection set
	Broadcast objects
	Peer-to-peer objects
	Other objects
	Restricted CAN-IDs

	CANopen conformance test

