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Abstract 

Very compact 70 MeV pulse race-track microtron is 
under construction now. To acquire outputs of beam-
current transformers on every orbit and pulses of high 
voltage and RF field a distributed multi-channel beam 
diagnostic system was developed. Each acquisition 
controller consists of four fast differential amplifiers 
and one DSP-based micro-controller with on-chip ADC 
and CAN-bus controller. Each amplifier is coupled with 
beam-current transformer and has bandwidth of up to 
150MHz and gain of up to 10. One of four channels is 
acquired during a measurement cycle. Another channel 
could be selected between two following pulses. All the 
controllers are connected via optically coupled CAN-
bus with a host diskless PC running under Linux with 
the RTLinux extension. Dedicated software of the 
system consists of low level acquisition software for 
DSP, network software for controllers and host PC, 
application software for PC to present date for operator 
and control system. Standard CAN application layers 
were considered but refused because of the closed 
character of the whole system and centralised 
synchronisation of the whole system. 

1 INTRODUCTION 
First successful runs of the very compact pulse 70 

MeV race-track microtron (RTM) have been provided 
and final tuning is carried out now. [1]. Parameters of 
the RTM are listed in the Table 1. 
 
Table 1. 
Injection energy  50 keV 
Energy gain/orbit 5 MeV 
Output energy 10-70 MeV 
Number of orbits 14 
Output current at 70 MeV  40 mA 
Pulse length ~6-10 µs 
Pulse repetition rate 150 Hz 
Dimensions 2.2x1.8x0.9 mm 
Weight 3200 kg 
Because of the limited place between orbits, the 
original small size pulse beam current monitor (BCM) 
has been designed. The BCM is a passive wide-band 

current transformer with sensitivity up to 4,9 V/A and 
double-ended 50 Ohm-coupled output. 

To measure amplitudes of the beam current in each 
orbit together with the amplitude of RF-field and high 
voltage pulse, a multi-channel distributed data 
acquisition beam diagnostic system has been created.  

2 BEAM DIAGNOSTIC SYSTEM AS A 
PART OF CONTROL SYSTEM 

The diagnostic system provides data necessary for 
control algorithms and human-machine interface (HMI) 
which are implemented in control system (CS) of the 
accelerator, therefore the system has been designed in 
such a way to be easily integrated with CS. 

CS has a traditional three level structure [2]. X86-
compatible computers are used. Front-end level consists 
of diskless PC with data acquisition boards. Middle 
level consists of diskless PC running under Linux 
together with real-time extension of the Linux - 
RTLinux. Linux is used to implement static and soft 
real-time algorithms whereas RTLinux is used to run 
hard real-time algorithms. HMI and the data bases are 
implemented in the third level. Ethernet over fibre optic 
is used to connect PCs in the accelerator hall with 
servers and HMI computers in the control room. 

Beam diagnostic looks from top level of CS like one 
more dedicated acquisition subsystem but has different 
implementation architecture of front-end level. 

3  STRUCTURE OF THE BEAM 
DIAGNOSTIC SYSTEM 

The following technologies developed during the last 
few years have been used for the system: application of 
diskless PC running under Linux with real-time 
extension - RTLinux [3,4]; application of distributed 
stand-alone DSP-based smart controllers [5]; 
application of CAN-bus for accelerator control [6]. 

The output signal of BCM is measured by a stand-
alone intelligent controller. Every controller has four 
inputs for the BCM. One of the four amplified signals 
could be digitised in a single acquisition cycle. The 
digitising process is synchronised by a dedicated pulse 
generated by the general synchronisation system of the 



 
RTM. CAN-bus is used to connect controllers with the 
diskless x86-compatible host computer running under 
Linux together with real-time extension RT-Linux 
(Figure 1). BOOTP protocol is used to download the 
operating system to the host computer via Ethernet after 
switching power on. Host computer is equipped with an 
in-house designed CAN-bus adapter [5]. 

Figure 1. Structure of beam diagnostic system. 
 
CAN-bus is a very popular fieldbus for accelerator 

control. Proceedings of ICALEPCS, PCAPAC and 
other conferences shows growing the popularity of 
CAN-bus for accelerator control with every next year. 
Maximum speed of CAN-bus is 1 Mbit/sec. But it is 
enough when the beam diagnostic system is used to 
measure values necessary for relatively slow static 
algorithms and HMI implemented in the high level of 
CS. The pulsed nature of the data allows transfer of the 
data in time gaps between two following pulses.  

4  ACQUISITION CONTROLLER  
The acquisition controller consists of analogue and 

digital parts (Figure 2). Four independent fast 
instrumental amplifiers (IA) are implemented in the 
analogue part. Every IA has unit gain bandwidth up to 
200 MHz. Each of the IA could be separately enabled 
or disabled by the controlling DSP. All outputs of the 
IA are connected together to the inputs of two 
additional buffer amplifiers. They are used to couple 
the output of the IA with the ADC input and test 
analogue output simultaneously. The test analogue 
output allows us to use a digitising oscilloscope to 
measure and store the shape of the pulses in each orbit 
of the RTM. 

The digital part consists of a digital signal processor 
(DSP) TMS320F241, an optically decoupled CAN-bus 
interface, an optically decoupled synchronisation input, 
a synchronisation and control schematic based on 
CPLD and an RS-232 interface. The DSP has an on-
chip CAN-bus controller, fast ADC and other useful 
peripherals. The fast on chip ADC has 10-bits 
resolution and an 800 ns minimum conversion time.  

Interrupt service mode of DSP operation allows us 
to utilise the high performance of DSP and ADC 
module. 

The synchronisation pulse coupled with the beam 
pulse starts data acquisition process. One of the four 
channels is measured during one measuring cycle. The 
host computer sets the number of the channel to 
measure after the next synchronisation pulse comes. In 
addition, the host computer checks the state of the 
controller, defines the number of continuous 
measurements and initiates transmission of the results 
from measuring controller to the host via CAN-bus. 

Figure 2. Structure of acquisition controller. 

5  BEAM DIAGNOSTIC SOFTWARE 
Standard CAN application layers such as CANopen 

and DeviceNet were considered as candidates for CAN 
application layers for the beam diagnostic system. 
Because of the following reasons the dedicated high 
level CANdiag protocol was created: 

- the diagnostic system is closed to future 
extension, so a custom protocol is acceptable; 

- DSP has limited size of on chip Flash-memory 
that is too small for standard protocols. 
Application of external memory is not 
reasonable; 

- centralised synchronisation of the system and 
asymmetric flows of data makes application of 
standard protocols inconvenient. 

The CANdiag protocol is based on a master-slave 
model of interaction. The master portion of protocol is 
implemented in host computer whereas all controllers 
are slaves. 

Only the 11-bit CAN-identifier is used. Figure 3 
represents usage of CAN-identifier bits. 
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Fig. 3. Usage of CAN-identifier field in  

CANdiag protocol. 
 

Each controller connected to the CAN-bus has its 
unique Media Access Control (MAC) identifier (ID), 
which identifies the device in the network and is used 
during the procedure of access to the bus. When the 
device sends a message to the bus, the first four bits of 
the CAN-identifier contain the MAC ID of sender 
(Source MAC ID). The next four bits contain the MAC 
ID of the device which expected to be receiver of this 
message (Destination MAC ID). The last three bits are 
used to identify the type of the message which define 
the semantic meaning of the message and format of 
data fields.  

The CANdiag protocol supports simultaneous 
operation up to 15 devices in CAN-bus with addresses 
in the range between 0x00 and 0x0e. MAC ID 0x0f is 
used for broadcast messages to implement duplication 
MAC ID checking. Each device on CAN-bus working 
under CANdiag protocol starts its activity on the bus 
after switching power on with the duplication MAC ID 
checking procedure. The CAN-bus node sends 
broadcast message with Source MAC ID equal to 
Destination MAC ID and equal to 0x0f. Data field 
contains MAC ID of the node trying to connect to the 
bus. All nodes of the bus which are active in this 
moment receive this broadcast message and compare 
the MAC ID from data field with its own MAC ID. If 
the received MAC ID is equal to its own MAC ID, this 
node sends a broadcast reply which means that the 
requested MAC ID is occupied already and it means 
that the attempt to connect to the bus failed.  

The CANdiag protocol supports the following types 
of messages defined by “Message type” field: 
• configuration messages – are used to select 

dedicate measurement channel in slave device and 
reset controller remotely, 

• status messages are used to check state of the 
controller; 

• input/output messages are used to transfer stored 
digitised data. 

Application software of the system was developed 
in ANSI C and consists of the low level software of the 
slave controller running on the DSP and the high level 
software of master.  

Software for slave part of the CANdiag protocol 
was completely created, tested and debugged under 
Linux in emulation mode taking in to consideration 
features of the C –compiler for the DSP platform. Then 
pieces of code were ported very easily and quickly to 
the DSP. 
Software of the master consists of a loadable module 
for RTLinux 3.0 and application software running 
under Linux on the same host computer. Application 

modules allow scanning of the CAN-bus to check state 
of all slave controllers, to provide cyclic polling of the 
controllers and so on. 

A dedicated API is used between the host computer 
and the general CS of RTM to allow access to the beam 
diagnostic system from CS. The control program that is 
a part of the CS software uses two real-time FIFOs to 
communicate with the master’s software. One FIFO is 
used to transmit commands from the control program to 
the master’s program. The second FIFO is used to 
transfer results back from the master to the control 
program. 

4  CONCLUSIONS 
To simplify unification of the beam diagnostic 

system with the control system during start up and 
future operation the same architectural decisions should 
be used. Single platform of software development 
consisting of GNU C under Linux together with 
RTLinux was used. The platform was used to develop 
software for the CS, for the beam diagnostic system, as 
well as for high level, for embedded applications, and 
for real-time as well as for non real-time components. 
This approach is very convenient and could be 
recommended to develop control and beam diagnostic 
systems. One more application of CAN-bus for beam 
diagnostic systems is described. A disk-less PC running 
under Linux could be recommended as reliable and 
inexpensive solution for middle level of control 
systems.  
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