
FRAT003
physics/0111197

DISTRIBUTED CAN-BUS BASED BEAM DIAGNOSTIC SYSTEM FOR
PULSE RACE-TRACK MICROTRON

F. Nedeoglo, O. Novojilov, S. Dudnikov, Department of Physics,

Moscow State University, 119899, Moscow, Russia
A. Chepurnov, I. Gribov, V. Shvedunov, Institute for Nuclear Physics,

Moscow State University, 119899, Moscow, Russia

Abstract

Very compact 70 MeV pulse race-track microtron is
under construction now. To acquire outputs of beam-
current transformers on every orbit and pulses of high
voltage and RF field a distributed multi-channel beam
diagnostic system was developed. Each acquisition
controller consists of four fast differential amplifiers
and one DSP-based micro-controller with on-chip ADC
and CAN-bus controller. Each amplifier is coupled with
beam-current transformer and has bandwidth of up to
150MHz and gain of up to 10. One of four channels is
acquired during a measurement cycle. Another channel
could be selected between two following pulses. All the
controllers are connected via optically coupled CAN-
bus with a host diskless PC running under Linux with
the RTLinux extension. Dedicated software of the
system consists of low level acquisition software for
DSP, network software for controllers and host PC,
application software for PC to present date for operator
and control system. Standard CAN application layers
were considered but refused because of the closed
character of the whole system and centralised
synchronisation of the whole system.

1 INTRODUCTION
First successful runs of the very compact pulse 70

MeV race-track microtron (RTM) have been provided
and final tuning is carried out now. [1]. Parameters of
the RTM are listed in the Table 1.

Table 1.
Injection energy 50 keV
Energy gain/orbit 5 MeV
Output energy 10-70 MeV
Number of orbits 14
Output current at 70 MeV 40 mA
Pulse length ~6-10 µs
Pulse repetition rate 150 Hz
Dimensions 2.2x1.8x0.9 mm
Weight 3200 kg
Because of the limited place between orbits, the
original small size pulse beam current monitor (BCM)
has been designed. The BCM is a passive wide-band

current transformer with sensitivity up to 4,9 V/A and
double-ended 50 Ohm-coupled output.

To measure amplitudes of the beam current in each
orbit together with the amplitude of RF-field and high
voltage pulse, a multi-channel distributed data
acquisition beam diagnostic system has been created.

2 BEAM DIAGNOSTIC SYSTEM AS A
PART OF CONTROL SYSTEM

The diagnostic system provides data necessary for
control algorithms and human-machine interface (HMI)
which are implemented in control system (CS) of the
accelerator, therefore the system has been designed in
such a way to be easily integrated with CS.

CS has a traditional three level structure [2]. X86-
compatible computers are used. Front-end level consists
of diskless PC with data acquisition boards. Middle
level consists of diskless PC running under Linux
together with real-time extension of the Linux -
RTLinux. Linux is used to implement static and soft
real-time algorithms whereas RTLinux is used to run
hard real-time algorithms. HMI and the data bases are
implemented in the third level. Ethernet over fibre optic
is used to connect PCs in the accelerator hall with
servers and HMI computers in the control room.

Beam diagnostic looks from top level of CS like one
more dedicated acquisition subsystem but has different
implementation architecture of front-end level.

3 STRUCTURE OF THE BEAM
DIAGNOSTIC SYSTEM

The following technologies developed during the last
few years have been used for the system: application of
diskless PC running under Linux with real-time
extension - RTLinux [3,4]; application of distributed
stand-alone DSP-based smart controllers [5];
application of CAN-bus for accelerator control [6].

The output signal of BCM is measured by a stand-
alone intelligent controller. Every controller has four
inputs for the BCM. One of the four amplified signals
could be digitised in a single acquisition cycle. The
digitising process is synchronised by a dedicated pulse
generated by the general synchronisation system of the

RTM. CAN-bus is used to connect controllers with the
diskless x86-compatible host computer running under
Linux together with real-time extension RT-Linux
(Figure 1). BOOTP protocol is used to download the
operating system to the host computer via Ethernet after
switching power on. Host computer is equipped with an
in-house designed CAN-bus adapter [5].

Figure 1. Structure of beam diagnostic system.

CAN-bus is a very popular fieldbus for accelerator

control. Proceedings of ICALEPCS, PCAPAC and
other conferences shows growing the popularity of
CAN-bus for accelerator control with every next year.
Maximum speed of CAN-bus is 1 Mbit/sec. But it is
enough when the beam diagnostic system is used to
measure values necessary for relatively slow static
algorithms and HMI implemented in the high level of
CS. The pulsed nature of the data allows transfer of the
data in time gaps between two following pulses.

4 ACQUISITION CONTROLLER
The acquisition controller consists of analogue and

digital parts (Figure 2). Four independent fast
instrumental amplifiers (IA) are implemented in the
analogue part. Every IA has unit gain bandwidth up to
200 MHz. Each of the IA could be separately enabled
or disabled by the controlling DSP. All outputs of the
IA are connected together to the inputs of two
additional buffer amplifiers. They are used to couple
the output of the IA with the ADC input and test
analogue output simultaneously. The test analogue
output allows us to use a digitising oscilloscope to
measure and store the shape of the pulses in each orbit
of the RTM.

The digital part consists of a digital signal processor
(DSP) TMS320F241, an optically decoupled CAN-bus
interface, an optically decoupled synchronisation input,
a synchronisation and control schematic based on
CPLD and an RS-232 interface. The DSP has an on-
chip CAN-bus controller, fast ADC and other useful
peripherals. The fast on chip ADC has 10-bits
resolution and an 800 ns minimum conversion time.

Interrupt service mode of DSP operation allows us
to utilise the high performance of DSP and ADC
module.

The synchronisation pulse coupled with the beam
pulse starts data acquisition process. One of the four
channels is measured during one measuring cycle. The
host computer sets the number of the channel to
measure after the next synchronisation pulse comes. In
addition, the host computer checks the state of the
controller, defines the number of continuous
measurements and initiates transmission of the results
from measuring controller to the host via CAN-bus.

Figure 2. Structure of acquisition controller.

5 BEAM DIAGNOSTIC SOFTWARE
Standard CAN application layers such as CANopen

and DeviceNet were considered as candidates for CAN
application layers for the beam diagnostic system.
Because of the following reasons the dedicated high
level CANdiag protocol was created:

- the diagnostic system is closed to future
extension, so a custom protocol is acceptable;

- DSP has limited size of on chip Flash-memory
that is too small for standard protocols.
Application of external memory is not
reasonable;

- centralised synchronisation of the system and
asymmetric flows of data makes application of
standard protocols inconvenient.

The CANdiag protocol is based on a master-slave
model of interaction. The master portion of protocol is
implemented in host computer whereas all controllers
are slaves.

Only the 11-bit CAN-identifier is used. Figure 3
represents usage of CAN-identifier bits.

controller

diskless PC with
Linux+RTLinux

CAN-bus-ISA

RTM orbits / RF system / High Voltage

CAN-bus

Ethernet

to Control System

controller controller����������

DSP
TMS320F241

CAN
controller

ADC

SCI

CPLD
Lattice
ispM4

JTAG

RS232

External
start

CAN-bus

Beam current
monitor

Optically coupled CAN transceiver

Instrumental
amplifier

Enable/Disable
lines

Oscilloscope

Source
MAC

Destination
MAC

Message
type

02610

Fig. 3. Usage of CAN-identifier field in

CANdiag protocol.

Each controller connected to the CAN-bus has its
unique Media Access Control (MAC) identifier (ID),
which identifies the device in the network and is used
during the procedure of access to the bus. When the
device sends a message to the bus, the first four bits of
the CAN-identifier contain the MAC ID of sender
(Source MAC ID). The next four bits contain the MAC
ID of the device which expected to be receiver of this
message (Destination MAC ID). The last three bits are
used to identify the type of the message which define
the semantic meaning of the message and format of
data fields.

The CANdiag protocol supports simultaneous
operation up to 15 devices in CAN-bus with addresses
in the range between 0x00 and 0x0e. MAC ID 0x0f is
used for broadcast messages to implement duplication
MAC ID checking. Each device on CAN-bus working
under CANdiag protocol starts its activity on the bus
after switching power on with the duplication MAC ID
checking procedure. The CAN-bus node sends
broadcast message with Source MAC ID equal to
Destination MAC ID and equal to 0x0f. Data field
contains MAC ID of the node trying to connect to the
bus. All nodes of the bus which are active in this
moment receive this broadcast message and compare
the MAC ID from data field with its own MAC ID. If
the received MAC ID is equal to its own MAC ID, this
node sends a broadcast reply which means that the
requested MAC ID is occupied already and it means
that the attempt to connect to the bus failed.

The CANdiag protocol supports the following types
of messages defined by “Message type” field:
• configuration messages – are used to select

dedicate measurement channel in slave device and
reset controller remotely,

• status messages are used to check state of the
controller;

• input/output messages are used to transfer stored
digitised data.

Application software of the system was developed
in ANSI C and consists of the low level software of the
slave controller running on the DSP and the high level
software of master.

Software for slave part of the CANdiag protocol
was completely created, tested and debugged under
Linux in emulation mode taking in to consideration
features of the C –compiler for the DSP platform. Then
pieces of code were ported very easily and quickly to
the DSP.
Software of the master consists of a loadable module
for RTLinux 3.0 and application software running
under Linux on the same host computer. Application

modules allow scanning of the CAN-bus to check state
of all slave controllers, to provide cyclic polling of the
controllers and so on.

A dedicated API is used between the host computer
and the general CS of RTM to allow access to the beam
diagnostic system from CS. The control program that is
a part of the CS software uses two real-time FIFOs to
communicate with the master’s software. One FIFO is
used to transmit commands from the control program to
the master’s program. The second FIFO is used to
transfer results back from the master to the control
program.

4 CONCLUSIONS
To simplify unification of the beam diagnostic

system with the control system during start up and
future operation the same architectural decisions should
be used. Single platform of software development
consisting of GNU C under Linux together with
RTLinux was used. The platform was used to develop
software for the CS, for the beam diagnostic system, as
well as for high level, for embedded applications, and
for real-time as well as for non real-time components.
This approach is very convenient and could be
recommended to develop control and beam diagnostic
systems. One more application of CAN-bus for beam
diagnostic systems is described. A disk-less PC running
under Linux could be recommended as reliable and
inexpensive solution for middle level of control
systems.

REFERENCES
[1] V.I. Shvedunov, et. al., “70 MeV Electron racetrack

microtron commissioning” Proc. of PAC, Chicago
June 18-22, 2001

[2] I.V. Gribov., I.V. et. al., ‘‘RaceTrack Microtron
Control System” Proc. of PAC, Chicago June 18-
22, 2001

[3] A. Chepurnov, F. Nedeoglo, et. al., “Simple CAN-
bus adapter for accelerator control running under
Linux and RTLinux” CD-ROM Proceedings of
PCAPAC’2000

[4] F. Nedeoglo, A. Chepurnov, D. Komissarov, “Linux
and RT-Linux for accelerator control - pros and
cons, application and positive experience” Proc. Of
ICALEPCS’99, Trieste, Italy, ISBN: 88-87992-00-
2, pp. 520-522.

[5] Chepurnov A.S., Dorokhin A.A., et. al., “Control
System for Accelerator with distributed
Intelligence Based on a "Family of Smart
Devices", Proc. of the Vth Europ. Particle
Accelerator Conference Sitges (Barcelona),
Institute of Physics Publish. Bristol and Philadelfia,
1996, p.1794-1796

[6] A. Chepurnov, A. Alimov, et. al., “Control System
for New Compact Electron Linac” Proc. Of
ICALEPCS’99, Trieste, Italy, ISBN: 88-87992-00-
2, pp.84-86.

