
SIMPLE CAN-BUS ADAPTER FOR ACCELERATOR CONTROL
RUNNING UNDER LINUX AND RTLINUX.

F. Nedeoglo, D. Komissarov, O. Novozhilov, Department of Physics, Moscow State University,
A. Chepurnov, Institute of Nuclear Physics, Moscow State University, 119899, Moscow, Russia

Abstract
CAN-bus was chosen as basic fieldbus for newly

designed distributed control system for electron linac. To
provide CAN-bus access for PC CAN-bus ISA
compatible adapters have been designed. The adapter is
based on Philips SJA1000 CAN-bus controller and
provides fast access to CAN-bus through direct memory
mapping. To use the adapter under Linux the Linux kernel
mode driver was developed. To support operation in real-
time driver for RTLinux has been developed and tested.
Both drivers provide the same POSIX IO compatible
interface for application software.

1 INTRODUCTION
When we decided to use CAN-bus in new control

system [1], we faced the problem what type of CAN-bus
adapter to use right away.

We use Linux together with RTLinux extension as
developing and runtime environment for our control
application, so we were need in CAN-bus adapter which
is supported under Linux [2,3]. That time, two years ago,
we didn’t find on the market CAN-bus adapter which
would be supported under Linux. So, we decided that if it
is necessary to develop our own Linux driver, it is
reasonable to develop our own hardware CAN-bus
adapter too to make it construction completely transparent
for our programmers.

As a result ISA-compatible passive ISA to CAN-bus
adapter was designed and manufactured. The set of chips
was so compact that next step was made when two
independent CAN-bus adapters were placed on the single
half-size ISA board. It allowed access two independent
CAN-bus channels through single ISA slot of PC’s
motherboard.

2 HARDWARE STRUCTURE OF CAN-
BUS ADAPTER.

Philips Semiconductor SJA1000 CAN-bus single-chip
controller was selected to implement hardware CAN-bus
protocol [4]. To control SJA1000 through ISA bus from
PC it is necessary to demultiplex multiplexed data-address
bus of SJA1000. Memory–map technique was used when
control registers and message FIFO of SJA1000 are
reflected in selected block of memory through ISA-bus.
Interrupt driven and polling mode of operation are
possible. Polling mode wastes PC resources very
seriously, so interrupt driven mode of operation is

preferable. CPLD with very useful “In Circuit
Programming via JTAG interface” feature is used to
organise interface between multiplexed parallel bus of
SJA1000 and ISA-bus. We use (and recommend to do it
especially for particle accelerator and industrial
applications) galvanic isolation between PC and CAN-bus
physical line. “Transmit” and “receive” lines of SJA1000
are isolated via fast opto-coupler of the 6N137 type.
Isolated area with CAN-transiver (PCA82C200 type) is
feeded with +5V power voltage through Burr-Brown DC-
DC converter DCP0505 with 1500V electrical isolation.

3 SOFTWARE FOR CAN-BUS.

3.1 Support of CAN-bus adapter under Linux.
To make CAN-bus alive under Linux, Linux kernel

driver for CAN-bus adapter was developed together with
simple Monitor program. The Monitor program listens
CAN-bus, visualises traffic of CAN-bus and allows user
to send manually composed message over CAN-bus
network. The driver can handle up to four CAN-bus-ISA
adapters simultaneously.

Application software interfaces with the driver by
means of writing and reading CAN frames to or from the
special character device file.

The driver supports asynchronous mode also. In that
mode driver sends the signal (SIGUSR2) to the user
process, when a CAN-frame arrive from CAN-bus
network. Therefore it is possible to build the interrupt
driven application to work with CAN-bus under Linux.

3.2 DeviceNet protocol stack under Linux.
To ensure high level of compatibility and ability to use

as home made as “off the shelf” components DeviceNet
high level protocol for CAN-bus was selected as basic for
our CAN-bus application programs [5]. We did not find
DeviceNet software stack under Linux. So DeviceNet
compliant protocol stack was developed [6].

The DeviceNet compliant protocol stack provides Slave
capabilities for different types of front-end controllers and
Master capabilities for host personal computer (PC)
running under Linux OS.

The protocol stack was developed in the form of
software library (Figure 1) in order to port it to different
hardware platforms. It consists of the following
components:

• the library kernel,
• the module with system dependent functions,

• the module with interface to CAN-bus.

Figure 1. The structure of the DeviceNet library.

This partitioning scheme ensures portability of our
software to platforms with poor resources (micro-
controllers) as well as platforms with rich resources such
as PCs. The library kernel contains the only protocol stack
and interface to the application programs. All
dependencies of particular environments are located in the
two other parts of the library. So if some kernel module
has been debugged and tested under Linux, it can be used
in DeviceNet compliant devices, developed for other
platforms. To port the library to a new platform it is
necessary to modify system dependent functions (module
called Sysdrv) and interface to CAN-bus (called Candrv).

Various versions of DeviceNet library have been tested
including Intel-compatible PC under Linux, single-chip
micro-controllers from Microchip (PIC16C7x/87x) and
DSP from TI (TMS320C2xx).

3.3 Software support of real-time.
Real-time extension of Linux OS - RTLinux allows

developing software components, which have got hard
real-time capability [7]. The real-time processes are
implemented in RTLinux as lightweight threads and run in
the kernel memory space. RTLinux coexists with Linux
OS, Linux kernel operates as separate real-time process
with the lowest priority using a virtual machine layer in
RTLinux.

We use the latest stable version 2 of RTLinux. The
version 2 consists of core component and several optional
components. The core component is distributed as Linux
kernel patch. The core component allows registering the
low interrupt handlers that cannot be pre-empted by Linux
itself. The optional components provide:
• pure priority based scheduler,
• set of functions to work with system clock and timers,
• support for POSIX I/O interface

(read/write/open/close) for real-time device drivers,
• real-time FIFOs, that connect a real-time process and

Linux user space process through a special character
device file so the Linux process can read/write to
real-time component,

• shared memory between real-time components and
Linux processes.

RTLinux uses the loadable kernel module mechanism
implemented in Linux OS to load as real-time processes
as optional components into the memory.

RTLinux version 2 supports the real-time POSIX.1b
threads as well as API of RTLinux version 1 for backward
compatibility. There is also support for POSIX mutex
locks in the latest minor versions of RTLinux 2.x. The
support of POSIX IO interface in RTLinux provides a
filesystem like interface to real-time drivers.

Figure 2. Interaction of RTLinux components in control
system software.

RTLinux provides only basic real-time capabilities
whereas Linux OS provides all other general services.
An application that requires real-time capabilities consists
of two parts: real-time kernel module implementing real-
time functionality and Linux process communicating via
FIFO or shared memory with the real-time module.

To support access of real-time software running on
front-end PC to CAN-bus the RTLinux driver for CAN-
bus ISA adapter was developed. The driver provides
POSIX I/O interface for real-time control and acquisition
processes.

If real-time process tries to access CAN-bus it opens
special character device file (/dev/canX), and just reads
from or writes to this file the CAN frames (Figure 2).

3.4. Support of CAN-bus adapter in other
operating systems.

Unfortunately it is rather difficult to achieve unified
environment for development and run-time. So, we should
use Windows based software tools when we develop
embedded hardware devices. We have got software
development tools for DSP and micro-controllers (C and
assembler compilers, TAG debuggers and so on) under
Windows only and there is no such kind of tool under
Linux yet.

So it was necessary to supply developers of embedded
hardware with the possibility to debug CAN-bus
compatible components within one PC.

So, system Windows NT driver was developed together
with Windows Monitor application. Driver support up to
four independent CAN-bus adapters installed in one PC.

Kernel mechanisms

Library API (interface to user code)

Library Kernel

Candrv: interface to CAN
bus (setup, read_msg,
write_msg)

Sysdrv: system specific
functions (timers, LED)

Linux Application

Linux Kernel
Memory Space

Shared
memory

CAN-bus-ISA
driver

InterruptI/O

FIFO

RTLinux
Scheduler

Linux User
Memory Space

Linux Kernel

POSIX IO functions

System calls

CAN-bus hardware

Real-time process

The Monitor program allows to watch CAN-bus activity
and to send message over CAN-bus. CAN-bus line
parameters could be changed manually.

Figure 3. Screenshot of CAN-bus Monitor program
running under Windows95

Monitor program with the same functions was
developed for MS-DOS too. It allows to use old fashion
PC as test stations running Monitor program as DOS
application under Windows95.

4 CAN-BUS BASED CONTROL SYSTEM

4.1 General layout of control system.
The control system consists of two classical levels

(Figure. 4) - non-real-time top level and real-time front-
end level. Both levels use Intel-compatible PCs.

Figure 4. Layout of the control system.
Front-end level supports fast control algorithms,

hardware locking, fast feedback loops, and signal
conditioning hardware. The basic functions of top level

are bootloading of front-end computers, supporting of
man-machine interface and providing necessary database
capabilities.

Top level and front-end PCs communicate via Ethernet
fibre optic link to provide galvanic isolation between
levels of control system.

4.2 Top level.
PC compatible computer runs under Linux 2.2.x at the

top level of control system. To improve interaction
between operator and accelerator we use knobs-type
modules and plan to use touch screen. The module
constructed around single-chip micro-controller consists
of encoder, two lines of high brightness LCD, and four
keys with corresponding LEDs. The modules (up to four
in our case) could be assigned dynamically with any
adjustable or controllable parameter of accelerator. The
modules communicate with top level PC via CAN-bus.

4.3 Front-end level.
At the front-end level the diskless PC runs under Linux

2.2.x with RTLinux 2.2a (real-time extension of Linux).
Diskless PC boots operating system via BOOTP protocol
from the top-level PC. Then root file system is mounted
with the help of NFS protocol.

CAN-bus-ISA adapter installed in front-end PC
controls embedded controllers that belonged to a family
of “Smart Devices”--intelligent controllers which support
functions of real-time digital feedback control, data
acquisition and processing [8].

4.4 Simple CAN-bus protocol.
DeviceNet protocol stack was not completely finished

when control system should been start working. So the
simple CAN-bus protocol was developed under Linux to
use temporary to start up new control system and test
components.

During the test and tuning of control system we
developed simple, master based CAN-bus protocol. The
interpretation of CAN ID field [9] by our protocol is
shown at Figure 5. The upper six bits of CAN ID field
contain slave’s ID. Following 2 bits are interpreted as
message type, and lower 3 bits are reserved for future use
and should contain zeroes.

One master device (PC) controls many slave devices
(embedded controllers). To distinct slaves one from
another, the slave is assigned by unique identificator.
Master device processes all of the frames arriving from
CAN-bus, and slave processes the only frames, which
CAN ID contains ID of appropriate slave. Any frames
transmitted by slave into CAN-bus network should
contain slaves ID in CAN ID field. As master device
operates in broadcast way, it is not necessary to assign an
identificator to master device. When master device

intends to transmit frame to appropriate slave device, it
includes the slave’s ID into CAN ID field of the frame.

Figure 5. Interpretation of CAN identificator
Four types of message: start, stop, auto and generic are

utilised in data exchange. The start-, stop- and auto-
messages are dedicated to slave’s operation in automatic
mode. Master sends start frame to appropriate slave
device at this mode of operation. Then the slave starts to
transmit messages of auto type in endless loop. To finish
this transmission master sends the stop message to the
appropriate slave. Generic type of messages is used to
organise the exchange messages between master and slave
on demand of master device.

4.5 Control system application software
The application software of control system is based on

architecture with Distributed Shared Memory (DSM) [3].
Modules of application software watch and control an
accelerator through a segment of DSM. Mirroring
mechanism of DSM segments is hidden from application
software. Software components accessing the segment of
DSM, and not responsible for mirroring, might know
nothing about inter-level communication construction and
were not concerned with the appearance of data. This
approach ensured rather clear application program
interface, which simplified work of programmers and
made possible the independent development of parts of
application software as mirroring algorithm for different
types of hardware.

5 CONCLUSION
CAN-bus ISA-compatible adapter together with

accompanying software were used successfully as for
development of CAN-bus compatible devices, as for
development of control software applications as for run of
control system of particle accelerator.

6 ACKNOWLEDGEMENTS
The authors acknowledge the Organising Committee of

PCaPAC for financial support to participate the
conference.

REFERENCES
[1] A. Chepurnov, A. Alimov, et. al., "Control System

for New Compact Electron Linac.", // Proc. of
ICALEPCS’99, Trieste, Italy, ISBN: 88-87992-00-2,
pp. 84-86.

[2] F. Nedeoglo, A. Chepurnov, D. Komissarov, Linux
and RT-Linux for accelerator control - pros and cons,
application and positive experience. // Proc. of
ICALEPCS’99, Trieste, Italy, ISBN: 88-87992-00-2,
pp. 520-522.

[3] A.S. Chepurnov, F.N. Nedeoglo, D.V. Komissarov,
Operating System Linux as Developing and Runtime
Platform for Control System of Particle Accelerator,
// Proc. of EPAC’2000

[4] SJA1000 Stand-alone CAN controller, Philipps
Semiconductors, DATA SHEET, Preliminary
Specification, 1997 Nov 04.

[5] A. Chepurnov, D. Komissarov, F. Nedeoglo, A.
Nikolaev, "DeviceNet Implementations under Linux
for Use in Control System of a Particle Accelerator."
// Proc. of ICALEPCS’99, Trieste, Italy, ISBN: 88-
87992-00-2, pp. 388-390.

[6] DeviceNet Specifications, Volume 1, Release 2.0,
Volume 2, Release 2.0.

[7] V. Yodaiken, M. Barabanov, “RTLinux Version Two
Design”, // VJY Associates LLC, 1999,
http://www.rtlinux.com/archive/design.pdf

[8] A.S.Chepurnov, A.A.Dorokhin, K.A.Gudkov,
V.E.Mnuskin, A.V.Shumakov, “Family of Smart
Devices on the base of DSP for Accelerator
Control.”, Proc. of ICALEPCS, W2B-d (Chicago,
Illinois USA, 1995).

[9] CAN Specification Version 2.0, 1991, Robert Bosch
GmbH, Postfach 50, D-7000 Stuttgard 1

CAN ID = 11 bits
010 5 3

Slave's ID Mesg
type

reserved
must be 0

